• Title/Summary/Keyword: Structural effect

Search Result 10,335, Processing Time 0.033 seconds

Ratio of Torsion (ROT): An index for assessing the global induced torsion in plan irregular buildings

  • Stathi, Chrysanthi G.;Bakas, Nikolaos P.;Lagaros, Nikos D.;Papadrakakis, Manolis
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.145-171
    • /
    • 2015
  • Due to earthquakes, many structures suffered extensive damages that were attributed to the torsional effect caused by mass, stiffness or strength eccentricity. Due to this type of asymmetry torsional moments are generated that are imposed by means of additional shear forces developed at the vertical resisting structural elements of the buildings. Although the torsional effect on the response of reinforced concrete buildings was the subject of extensive research over the last decades, a quantitative index measuring the amplification of the shear forces developed at the vertical resisting elements due to lateral-torsional coupling valid for both elastic and elastoplastic response states is still missing. In this study a reliable index capable of assessing the torsional effect is proposed. The performance of the proposed index is evaluated and its correlation with structural response quantities like displacements, interstorey drift, base torque, shear forces and upper diaphragm's rotation is presented. Torsionally stiff, mass eccentric single-story and multistory structures, subjected to bidirectional excitation, are considered and nonlinear dynamic analyses are performed using natural records selected for three hazard levels. It was found that the proposed index provides reliable prediction of the magnitude of torsional effect for all test examples considered.

Structural Equation Modeling Using R: Mediation/Moderation Effect Analysis and Multiple-Group Analysis (R을 이용한 구조방정식모델링: 매개효과분석/조절효과분석 및 다중집단분석)

  • Kwahk, Kee-Young
    • Knowledge Management Research
    • /
    • v.20 no.2
    • /
    • pp.1-24
    • /
    • 2019
  • This tutorial introduces procedures and methods for performing structural equation modeling using R. To do this, we present advanced analysis methods based on structural equation model such as mediation effect analysis, moderation effect analysis, moderated mediation effect analysis, and multiple-group analysis with R program code using R lavaan package that supports structural equation modeling. R is flexible and scalable, unlike traditional commercial statistical packages. Therefore, new analytical techniques are likely to be implemented ahead of any other statistical package. From this point of view, R will be a very appropriate choice for applying new analytical techniques or advanced techniques that researchers need. Considering that various studies in the social sciences are applying structural equations modeling techniques and increasing interest in open source R, this tutorial is expected to be useful for researchers who are looking for alternatives to existing commercial statistical packages.

A Study on The Structural Systems of Modern Architecture and Architectural Characteristics (근대건축의 구조시스템과 건축적 특성에 관한 연구)

  • Cho, Sung-Hyun
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.10 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • The purpose of this study is to examine the relationship between the structural system used in modern architecture and the form and spatial composition of the buildings. The principle in stabilization of structures is closely related to the architectural form. That is, in order to stabilize a building, a special type of structural system is required and consequently shows up with consistent characteristics in the architectural form. Modern architecture can be classified into skeleton structure, trusses structure, and space structure according to the structural characteristics. Skeleton structure is then divided into a perpendicular form and tapered form. Trusses structure is categorized as dome-shaped structure and slab-shaped structure, and space structure can be divided into compressible space structure and tensile space structure. When classifies the modern building with the aspect of architectural effect, there is a possibility of trying to divide with effect of production, and its expression. Effect of production mean structural system and effect of expression mean space and plan.

Moderating Effect of Structural Complexity on the Relationship between Surgery Volume and in Hospital Mortality of Cancer Patients (일부 암 종의 수술량과 병원 내 사망률의 관계에서 구조적 복잡성의 조절효과)

  • Youn, Kyungil
    • Health Policy and Management
    • /
    • v.24 no.4
    • /
    • pp.380-388
    • /
    • 2014
  • Background: The volume of surgery has been examined as a major source of variation in outcome after surgery. This study investigated the direct effect of surgery volume to in hospitals mortality and the moderating effect of structural complexity-the level of diversity and sophistication of technology a hospital applied in patient care-to the volume outcome relationship. Methods: Discharge summary data of 11,827 cancer patients who underwent surgery and were discharged during a month period in 2010 and 2011 were analyzed. The analytic model included the independent variables such as surgery volume of a hospital, structural complexity measured by the number of diagnosis a hospital examined, and their interaction term. This study used a hierarchical logistic regression model to test for an association between hospital complexity and mortality rates and to test for the moderating effect in the volume outcome relationship. Results: As structural complexity increased the probability of in-hospital mortality after cancer surgery reduced. The interaction term between surgery volume and structural complexity was also statistically significant. The interaction effect was the strongest among the patients group who had surgery in low volume hospitals. Conclusion: The structural complexity and volume of surgery should be considered simultaneously in studying volume outcome relationship and in developing policies that aim to reduce mortality after cancer surgery.

Estimation of Depth Effect on the Bending Strength of Domestic Japanese Larch Structural Lumber using Weibull Weakest Link Theory

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.112-118
    • /
    • 2014
  • The depth effect on bending strength of Japanese larch structural lumber was investigated by using the published data of two different depth lumbers with the same length. Depth effect parameters were derived from Weibull's weakest link theory and compared to the results from other researches. Depth effect on bending strength was significant for No.1 and No.3 lumber, but not insignificant for No.2 lumber. Calculated value of the depth effect adjustment factors was 0.21, 0.11 and 0.22 by lumber grade, respectively. These results were similar to those results from previous researches and supported depth effect on bending strength of lumber. An apparent depth adjustment factor has been proposed to 0.2 in the literatures. Based on this study, depth adjustment factor was considered to 0.2 as a conservative optimum design value that should be incorporated in domestic building code (KBC) for structural lumber.

A Study on the Structural Behavior of Underground Openings Considering the Effect of Excavation (굴착영향을 고려한 지하공동의 구조거동연구)

  • 최규섭;김대홍
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.111-117
    • /
    • 1992
  • In order to design and construct a safe and economic underground structure, it is essential to understand the structural behavior of underground openings considering the effect of the sequential excavation. Therefore, this paper includes the study of initial stress distribution before excavation and stress redistribution due to the sequential excavation. And discussion on numerical simulation techniques for the sequential excavation is also included. Then, the underground structure is analyzed using the finite element and distinct element methods of analysis considering the effect of the sequential excavation. Based on the results of the analysis, the followings are discussed: shape of the openings, effect and timing of structural reinforcements. methods and sequence of excavation.

  • PDF

Improvement of the earthquake resistance of R/C beam-column joints under the influence of P-△ effect and axial force variations using inclined bars

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.4
    • /
    • pp.389-410
    • /
    • 2004
  • In this study, theoretical and experimental results are presented which were obtained during an investigation of the influence of the $P-{\Delta}$ effect that was caused by the simultaneous changing of the axial load P of the column and the lateral displacement ${\Delta}$ in the external beam-column joints. The increase or decrease of ${\Delta}$ was simultaneous with the increase or decrease of the axial compression load P and caused an additional influence on the aseismic mechanical properties of the joint. A total of 12 reinforced concrete exterior beam-column subassemblies were examined. A new model, which predicts the beam-column joint ultimate shear strength, was used in order to predict the seismic behaviour of beam-column joints subjected to earthquake-type loading plus variable axial load and $P-{\Delta}$ effect. Test data and analytical research demonstrated that axial load changes and $P-{\Delta}$ effect during an earthquake cause significant deterioration in the earthquake-resistance of these structural elements. It was demonstrated that inclined bars in the joint region were effective for reducing the unfavourable impact of the $P-{\Delta}$ effect and axial load changes in these structural elements.

Seismic Evaluation of an Apartment House With a Coupling Effect of Structural and Non-Structural Walls (공동 주택의 구조벽과 비내력벽의 일체화 효과에 따른 내진 성능 분석)

  • Kim, Eun-Seo;Choi, Byung-Hoon;Lee, Jung-Han;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.3
    • /
    • pp.85-92
    • /
    • 2019
  • This study was carried out to examine the effect of the presence of non-structural walls in apartment buildings subjected to an earthquake. It was believed that the presence of non-structural walls, which has not been considered in the structural design process, was usually built together with structural walls and this led to significant damages to the apartment buildings in Pohang earthquake, 2017. In this study, a 22-story apartment building was selected and modeled to simulate the seismic behavior due to earthquakes. The story drift, performance point, and compressive strain in the walls were the main parameters to evaluate the seismic performance with the presence of non-structural walls.

Determination of the restoration effect on the structural behavior of masonry arch bridges

  • Altunisik, A.C.;Bayraktar, A.;Genc, A.F.
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.101-139
    • /
    • 2015
  • In this paper, it is aimed to investigate the restoration effect on the structural behavior of masonry arch bridges. Dandalaz masonry arch bridge located on the 4km east of Karacasu town of Aydin, Turkey is selected as a numerical example. The construction year of the bridge is not fully known, but the bridge is dated back to 15th century. Considering the current situation, it can be easily seen that the structural elements such as arch, side walls and timber blocks are heavily damaged and the bridge is unserviceable. Firstly finite element model of the bridge is constituted to reflect the current situation (before restoration) using building survey drawings. After, restoration project is explained and finite element model is reconstituted (after restoration). The structural responses of the bridge are obtained before and after restoration under dead load, live load and dynamic earthquake loads. For both conditions, maximum displacements, maximum-minimum principal stresses and maximum-minimum elastic strains are given with detail using contours diagrams and compared with each other to determine the restoration effect. From the study, it can be seen that the maximum internal forces are consisted under dynamic loads before and after restoration. Also, the restoration projects and studies have important and positive effects on the structural response of the bridge to transfer these structures to future.

The Effect of Cr doping on the Magnetic and Magnetocaloric Properties of MnCoGe Alloys

  • Emre, S. Yuce
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.405-411
    • /
    • 2013
  • The structural, magnetic and magnetocaloric properties of $CoMn_{1-x}Cr_xGe$ (x=0.05-0.125) have been investigated by using electron microscopy, x-ray diffraction, calorimetric and magnetic measurements. In this study, our aim is to justify the magnetocaloric effect by tuning the structural and magnetic transition temperature with Cr doping on CoMnGe pure system. The substitution of Cr for Mn leads to a decrease of both structural and magnetic transition temperatures. However, structural and magnetic transition temperatures do not close to each other. From magnetization measurement, we calculate that isothermal entropy change associated with magnetic transition can be as high as 3.82 J $kg^{-1}K^{-1}$ at 302 K in a field of 7 T. Meanwhile, structural phase transition contribution to isothermal entropy change is calculated as 5.85 J $kg^{-1}K^{-1}$ at 322 K for 7 T.