• 제목, 요약, 키워드: Synechocystis PCC 6803

검색결과 54건 처리시간 0.045초

Type II Isopentenyl Diphosphate Isomerase로서 Synechocystis sp. PCC6803의 sll1556의 작용 특성 (Functional Characterization of sll1556 of Synechocystis sp. PCC6803 as Type II Isopentenyl Diphosphate Isomerase)

  • 조갑연
    • 한국식품영양학회지
    • /
    • v.23 no.4
    • /
    • pp.526-530
    • /
    • 2010
  • Synechocystis sp. PCC6803의 type II Isopentenyl diphosphate isomerase gene(sll1556, Syidi2)의 특성을 살펴보기 위하여 ${\Delta}idi$인 E. coli $DH5{\alpha}$를 제작하고, 이 균주에서 cloning하고 발현시켰다. 라이코펜 합성 유전자들(crtE, crtB, and crtI)과 mevalonate pathway 유전자들(MvK1, MvK2, Mvd)를 함유한 ${\Delta}idi$ E. coli $DH5{\alpha}$ 균주를 mevalonate가 함유된 LB 배지에서 배양하면 mevalonate pathway 유전자들을 함유한 E. coli $DH5{\alpha}$균주는 mevalonate에 의해 생성된 isopentenyl diphosphate의 독성에 의해 매우 느린 성장을 보였다. 라이코펜 합성유전자들과 mevalonate 합성유전자들을 함유한 ${\Delta}idi$ E. coli $DH5{\alpha}$ 균주에 Syidi2를 도입한 결과, mevalonate가 함유된 LB배지에서 균체의 성장이 완전히 회복되었으며, 라이코펜이 합성되었음을 나타내는 붉은 균락이 형성되었다. 이에 따라, SyIdi1과 ECidi를 도입하여 비교한 결과, 라이코펜 합성 유전자들과 mevalonate pathway 유전자들을 함유한 ${\Delta}idi$ E. coli $DH5{\alpha}$ 균주 자체와 SyIdi1을 도입한 라이코펜 합성 유전자들과 mevalonate pathway 유전자들을 함유한 ${\Delta}idi$ E. coli $DH5{\alpha}$ 균주는 IPP의 독성에 의해 성장이 매우 느렸으나, SyIdi2, RSidi, HPidi, 및 ECidi를 함유하고 있는 ${\Delta}idi$ E. coli $DH5{\alpha}$ 균주는 균체의 성장과 라이코펜의 합성을 완전히 회복하였으며, 그중 가장 우수한 라이코펜 생합성 결과를 나타낸 것은 pSUP-LYCSyIdi2로서 균체당 라이코펜 생성량이 control 대비 2.8배이었다.

The Photoheterotrophic Growth of Bacteriochlorophyll Synthase-Deficient Mutant of Rhodobacter sphaeroides Is Restored by I44F Mutant Chlorophyll Synthase of Synechocystis sp. PCC 6803

  • Kim, Eui-Jin;Kim, Hyeonjun;Lee, Jeong K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.959-966
    • /
    • 2016
  • Chlorophyll synthase (ChlG) and bacteriochlorophyll synthase (BchG) have a high degree of substrate specificity. The BchG mutant of Rhodobacter sphaeroides, BG1 strain, is photosynthetically incompetent. When BG1 harboring chlG of Synechocystis sp. PCC 6803 was cultured photoheterotrophically, colonies arose at a frequency of approximately 10-8. All the suppressor mutants were determined to have the same mutational change, ChlGI44F. The mutated enzyme ChlGI44F showed BchG activity. Remarkably, BchGF28I, which has the substitution of F at the corresponding 28th residue to I, showed ChlG activity. The Km values of ChlGI44F and BchGF28I for their original substrates, chlorophyllide (Chlide) a and bacteriochlorophyllide (Bchlide) a, respectively, were not affected by the mutations, but the Km values of ChlGI44F and BchGF28I for the new substrates Bchlide a and Chlide a, respectively, were more than 10-fold larger than those for their original substrates, suggesting the lower affinities for new substrates. Taken together, I44 and F28 are important for the substrate specificities of ChlG and BchG, respectively. The BchG activity of ChlGI44F and the ChlG activity of BchGF28I further suggest that ChlG and BchG are evolutionarily related enzymes.

Characterization of LexA-mediated Transcriptional Enhancement of Bidirectional Hydrogenase in Synechocystis sp. PCC 6803 upon Exposure to Gamma Rays

  • Kim, Jin-Hong;Lee, Min Hee;Kim, Ji Hong;Moon, Yu Ran;Cho, Eun Ju;Kim, Ji Eun;Lee, Choon-Hwan;Chung, Byung Yeoup
    • Rapid Communication in Photoscience
    • /
    • v.1 no.1
    • /
    • pp.21-24
    • /
    • 2012
  • Influence of gamma rays on the cyanobacterium Synechocystis sp. PCC 6803 cells was investigated in terms of a bidirectional hydrogenase, which is encoded by hoxEFUYH genes and responsible for biohydrogen production. Irradiated cells revealed a substantial change in stoichiometry of photosystems at one day after gamma irradiation at different doses. However, as evaluated by the maximal rate of photosynthetic oxygen evolution, maximal photochemical efficiency of photosystem II, and chlorophyll content, net photosynthesis or photosynthetic capacity was not significantly different between the control and irradiated cells. Instead, transcription of hoxE, hoxH, or lexA, which encodes a subunit of bidirectional hydrogenase or the only transcriptional activator, LexA, for hox genes, was commonly enhanced in the irradiated cells. This transcriptional enhancement was more conspicuously observed immediately after gamma irradiation. In contrast, hydrogenase activities were found to somewhat lower in the irradiated cells. Therefore, we propose that transcription of hox genes should be enhanced by gamma irradiation in a LexA-mediated and possibly photosynthesis-independent manner and that this enhancement might not induce a subsequent increase in hydrogenase activities, probably due to the presence of post-transcriptional and/or post-translational regulatory mechanisms.