• Title/Summary/Keyword: continuum beam analogy

Search Result 4, Processing Time 0.02 seconds

Continuum Beam Analogy for Analysis of Framed Tube Structures with Multiple Internal Tubes (연속 보 해석 기법에 의한 내부튜브를 가진 골조 튜브 구조물의 해석)

  • 이강건
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.215-221
    • /
    • 2000
  • A simple numerical modeling technique is proposed for the analysis of framed tube structures with multiple internal tubes. The structures are analysed using a continuum approach in which each tube is individually modelled by a tube beam that accounts for the flexural and shear deformations, as well as the shear lag effects. By simplifying assumptions regarding the form of strain distributions in external and internal tubes, the structural behaviours is reduced to the solution of a single second order linear differential equation. The numerical analysis uses the variational approach on the basis of the minimum potential energy priniciple. Three framed-tube sructures with single, two and three internal tubes are analysed to verify the applicability and reliability of the proposed method.

  • PDF

Numerical Analysis of Shear Stresses in Framed Tube Structures with Internal Tube(s) (내부튜브가 있는 골조 튜브 구조물의 전단응력에 대한 수치해석)

  • Lee, Kang-Kun;Lee, Lee-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.511-521
    • /
    • 2002
  • A simple numerical modelling technique is proposed for estimating the shear stress distribution in beams of framed tube structures with multiple internal tubes. The structures arc analysed using a continuum approach in which each tube is individually modelled by a tube beam that accounts for the flexural and shear deformations, as well as the shear lag effects. The numerical analysis of shear stress is based on the mathematical analogy in conjunction with the elastic theory By simplifying assumptions regarding the form of strain distributions in external and internal tubes, the shear stress distributions are expressed in terms of a series of lineal functions of the second moments of area of the structures and the corresponding geometric and material properties, as well as the applied loads. Previous studies for axial stresses and shear lag phenomenon are further developed lot the numerical analysis of shear stresses in the tubes. The simplicity and accuracy of the proposed method are demonstrated through the solutions of throe numerical examples.

Orthotropic Beam Analogy for Analysis of Shear Stresses in Framed-Tube Structures (구형등가보 원리에 의한 튜브 구조물의 전단응력 해석)

  • 이강건;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.393-400
    • /
    • 2001
  • A simple numerical modelling technique is proposed for estimating the shear stress distribution in beams of framed tube structures with multiple internal tubes. The structures are analysed using a continuum approach in which each tube is individually modelled by a tube beam that accounts for the flexural and shear deformations, as well as the shear lag effects. The method idealises the discrete tubes-in-tube structures as an assemblage of equivalent multiple beams, each composed of orthotropic plate panels. The numerical analysis of shear stress is based on the elastic theory in conjunction with the minimum potential energy principle. By simplifying assumptions regarding the form of strain distributions in external and internal tubes, the shear stress distributions are expressed in terms of a series of linear functions of the second moments of area of the structures and the corresponding geometric and material properties, as well as the applied loads. The simplicity and accuracy of the proposed method are demonstrated through the solutions of three numerical examples.

  • PDF

The use of eccentric beam elements in the analysis of slab-on-girder bridges

  • Chan, Tommy H.T.;Chan, Jeffrey H.F.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.85-102
    • /
    • 1999
  • With the advent of computer, the finite element method has become a most powerful numerical method for structural analysis. However, bridge designers are reluctant to use it in their designs because of its complex nature and its being time consuming in the preparation of the input data and analyzing the results. This paper describes the development of a computer based finite element model using the idea of eccentric beam elements for the analysis of slab-on-girder bridges. The proposed method is supported by a laboratory test using a reinforced concrete bridge model. Other bridge analytical schemes are also introduced and compared with the proposed method. The main aim of the comparison is to prove the effectiveness of the shell and eccentric beam modelling in the studies of lateral load distribution of slab-on-girder bridges. It is concluded that the proposed finite element method gives a closer to real idealization and its developed computer program, SHECAN, is also very simple to use. It is highly recommended to use it as an analytical tool for the design of slab-on-girder bridges.