• Title/Summary/Keyword: geologic time

Search Result 145, Processing Time 0.03 seconds

Review on the Geologic Time Scale in Earth Science Textbooks of Korea and Other Countries and on the International Geologic Time Scale (국내외 지구과학 교과서의 지질 연대와 국제 지질 연대 자료의 검토)

  • Kim, Kyung-Soo;Kim, Jeong-Yul
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.624-629
    • /
    • 2005
  • Numerical data of the geological time scale in Earth Science I, II textbooks and those of University textbooks of Korea and other countries are briefly reviewed. Numerical data of the geologic time scale shown in Earth Science I, II textbooks are mostly out of date and many of them follow those in the University textbooks of Korea. The same situation is apparent for introductory Earth Science or Geology textbooks of other countries as old data exist in their text books as well. There are many new data in the International Stratigraphic Chart (ISC 2000) and International Geologic Time Scale (IGTS 2003) recently updated by International Commission on Stratigraphy (ICS) and A Geologic Time Scale (GTS 2004). Among the new data, some important things are Paleogene and Neogene Periods of Cenozoic Era, Mississippian and Pensilvanian Epochs of Carborniferous Period, Paleoproterozoic, Mesoproterozoic, and Neoproterozoic Eras of Proterozoic Eon, and Eoarchean, Paleoarchean, Mesoarchean, and Neoarchean Eras of Archean Eon. These new data should be used in the new Earth Science textbooks.

High School Science Teachers' Understanding of the Contents Related to the Geologic Time in the Secondary School Science Textbooks and the Guidebooks for Teachers (고등학교 과학 교사들의 지질 시대 관련 개념들에 대한 이해: 중등 교과서와 지도서를 중심으로)

  • Kim, Kyung-Soo;Kim, Jeong-Yul
    • Journal of the Korean earth science society
    • /
    • v.27 no.1
    • /
    • pp.32-48
    • /
    • 2006
  • The purposes of this study can divided into three parts: First, to investigate high school science teachers' understanding concerning geologic time; second, to analyze contents related to geologic time in the secondary school science textbooks and teachers' guidebooks; and third, to compare the response type of science teachers using the results of the contents. Forty high school science teachers in the Chungbuk province are chosen to answer to the questionnaire. Many teachers (50%) think that the age of Earth is simply measured by radioisotope. However, most of them do not know the measuring method in detail. The over 50% of the teachers think that the uniformitarianism, law of superposition, law of faunal succession law of unconformity, and law of intrusion are the great five laws of historical geology. Many part of the contents related to geologic time in the textbooks and guidebooks are incorrect and described distinctly from each other. Such content includes the age of Earth, age of the oldest rock in Earth, definition and range of geologic time, measuring method of the Earth's age, and law of historical geology. Many of the science teachers do not have a complete understanding of the contents related to geologic time. This study suggests that the reason lies heavily on the contents described in the textbooks and guidebooks. Therefore, it is necessary to review and revise the contents related to geologic time in the textbooks and guidebooks.

A Study on the Teaching Plan of Geologic Field Trip in the Earth Science Ecucation, High School (고등학교 지구 과학에서 야외 지질 조사의 지도 방법)

  • Oh, Mihn-Soo
    • Journal of The Korean Association For Science Education
    • /
    • v.1 no.1
    • /
    • pp.45-52
    • /
    • 1978
  • In order to normalized the Earth Science Education, experiments and geologic field trainings are very important. But it have not carried out on account of many difficulties in current High School of Korea. These difficulties are lack of time, many problems of the text book, heavy teaching load, shortage of facilities and experimental equipments, and poor quality of teacher etc. The practical training of geologic field trip is very important in Earth Science Education. Finally, wirter propose a new teaching plan of geologic field training as follows: 1. The teacher must prepare the guide paper of field geologic training. 2. Subjects of practical training must simplify. 3. The teacher must take a pre-field investigation in order to get the teaching plan and the preparation of practical field training. 4. Let students observe for themselves on this guide, as if they were geologists. 5. The teacher must conclude about practical training after the working.

  • PDF

High School Students' Conceptions on Landscape Formation and Geological Time (고등학생들의 지형 형성과 지질학적 시간 개념)

  • Lee, Yongkyu;Han, Shin;Jeong, Jinwoo;Park, Taeyoon
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.8 no.3
    • /
    • pp.332-345
    • /
    • 2015
  • Earth science is the study to explore the planet in which we live. Among these earth science geology of the area it can be the most critical and important study. However, because of the size and scope is too broad temporal spatial eurona covered in geology is true that many students find difficult about the geology field. In this study, in conjunction with landscape formation of geologic time for the concept to be among the core areas of Geology examined the concept and recognize it as the destination for high school students. Is a test tool for the analysis was adapted for use by Jolley (2010) has developed LIFT (The Landscape Identification and Formation Test). Currently we fix the strip to match the country through a validity check of the curriculum. Results of the study were as follows: First, the ability to check the landscape and formation is expected to estimate the time and the liberal arts students was higher than the natural science students. The reason for this seems to be the influence of learning geographical subjects. Second, the concept of geological time was found to lack both natural science and liberal arts students. The reason is that the students in the previous process because it deals with the concept of geologic time from the top of Earth Science Education II seems to be because there was no chance of learning about geological time. Third, the results confirm the confidence of the students surveyed in the landscape formation time natural science students was higher than liberal arts students. The research measured gender boys higher than girls. Fourth, the students on the landscape and geological time was found to have a number of misconceptions. This appears to be due to the students to feel difficulty in thinking of the concept because the need to understand the abstract geologic time. Therefore, it is necessary just to hold misconceptions about the concept of geology students have through the study of the landscape and geological time.

Analysis of rainfall infiltration characteristics for unsaturated soils using a column test equipment (모형실험장치를 이용한 불포화토의 강우 침투특성 분석)

  • Park, Kyu-Bo;Chae, Byung-Gon;Kim, Kyeong-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.736-742
    • /
    • 2010
  • This study was conducted to characterize on the relationships of rainfall intensity and infiltration rate of rainfall dependent on unit weight change in the gneissic weathered soil by a column test equipment. In this study, volumetric water content and pore water pressure were measured using TDR sensors and tensiometers at regular time intervals. Rainfall conditions including continuous rainfall and repeated rainfall were selected in order to know the effect of antecedent rainfall. In the condition of rainfall intensity 20mm/h and the unit weights of soil as $1.35g/cm^3$, $1.55g/cm^3$ and $1.61g/cm^3$, average rainfall infiltration rate was $2.814{\times}10^{-3}cm/sec$, $1.969{\times}10^{-3}cm/sec$ and $1.252{\times}10^{-3}cm/sec$ respectively. The higher rainfall intensity and lower unit weight of soil, the faster average infiltration rate. Overflow in the column was happened except rainfall condition of rainfall intensity 20mm and soil unit weight $1.35g/cm^3$. Increasing the soil unit weight, overflowed water was increased and occurrence time was faster.

  • PDF

CLSM [Confocal Laser Scanning Microscope] Observation of the Surface Roughness of Pressurized Rock Samples During Freeze/Thaw Cycling

  • Kim, Hye-jin;Choi, Junghae;Chae, Byung-gon;Kim, Gyo-won
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.165-178
    • /
    • 2015
  • Physical and chemical weathering degrades rock, affecting its structural properties and thus the stability of stone buildings or other structures. Confocal laser scan microscopy (CLSM) is used here to observe temporal changes in the surface roughness of rock samples under simulated accelerated weathering. Samples were pressurized to 50, 55, or 70 MPa using a pressure frame, and subjected to freeze/thaw cycling controlled by a thermostat. The temperature was cycled from -20℃ to 40℃ and back. After each 20 cycles, CLSM was used to assess the change in surface roughness, and roughness factors were calculated to quantify the progression of the surface condition over time. Variations in cross-section line-roughness parameters and surface-roughness parameters were analyzed for specific parts of the sample surfaces at 5× and 50× magnification. The result reveals that the highest and lowest values of the roughness factors are changed according to elapsed time. Freezing/thawing at high pressure caused larger changes in the roughness factor than at low pressure.

Web Contents Development of Virtual Geologic Field Survey for High School Students -Focusing on the Songaksan and Jisagae area of Jeju island- (고등학교 학생을 위한 가상지질조사 웹 컨텐츠 개발 -제주도 송악산과 지삿개를 중심으로-)

  • Hong, Seok-Eui;Lee, Chang-Zin
    • Journal of the Korean earth science society
    • /
    • v.24 no.3
    • /
    • pp.172-180
    • /
    • 2003
  • Geologic field survey is very important for the high school students who take the courses of earth science under the 7th earth science curriculum, however actually it is very difficult for the students to survey in the field because of long time and distance, and expenses. To overcome these difficulties, this study focused on developing the web contents and teaching-learning materials for virtual geologic field survey of the Songaksan and Jisagae area, Jeju island. The developed web contents were placed into three parts; main manu, sub manu and contents to help the learners flow-chart of the program easily. To overcome the weakness of existing textual web materials, some movable images and worksheets were provided for the learners, and the web contents were designed for the learners to experience as similar as the geologic field survey may let them do.

The Current Methods of Landslide Monitoring Using Observation Sensors for Geologic Property (지질특성 관측용 센서를 이용한 산사태 모니터링 기법 현황)

  • Chae, Byung-Gon;Song, Young-Suk;Choi, Junghae;Kim, Kyeong-Su
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.291-298
    • /
    • 2015
  • There are many landslides occurred by typhoons and intense rainfall during the summer seasons in Korea. To predict a landslide triggering it is important to understand mechanisms and potential areas of landslides by the geological approaches. However, recent climate changes make difficult to predict landslide based on only conventional prediction methods. Therefore, the importance of a real-time monitoring of landslide using various sensors is emphasized in recent. Many researchers have studied monitoring techniques of landslides and suggested several monitoring systems which can be applicable to the natural terrain. Most sensors of landslide monitoring measure slope displacement, hydrogeologic properties of soils and rocks, changes of stress in soil and rock fractures, and rainfall amount and intensity. The measured values of each sensor are transmitted to a monitoring server in real-time. The ultimate goal of landslide monitoring is to warn landslide occurrence in advance and to reduce damages induced by landslides. This study introduces the current situation of landslide monitoring techniques in each country.

An Adaptive and Real-Time System for the Analysis and Design of Underground Constructions

  • Gutierrez, Marte
    • Geotechnical Engineering
    • /
    • v.26 no.9
    • /
    • pp.33-47
    • /
    • 2010
  • Underground constructions continue to provide challenges to Geotechnical Engineers yet they pose the best opportunities for development and deployment of advance technologies for analysis, design and construction. The reason for this is that, by virtue of the nature of underground constructions, more data and information on ground characteristics and response become available as the construction progresses. However, due to several barriers, these data and information are rarely, if ever, utilized to modify and improve project design and construction during the construction stage. To enable the use of evolving realtime data and information, and adaptively modify and improve design and construction, the paper presents an analysis and design system, called AMADEUS, for underground projects. AMADEUS stands for Adaptive, real-time and geologic Mapping, Analysis and Design of Underground Space. AMADEUS relies on recent advances in IT (Information Technology), particularly in digital imaging, data management, visualization and computation to significantly improve analysis, design and construction of underground projects. Using IT and remote sensors, real-time data on geology and excavation response are gathered during the construction using non-intrusive techniques which do not require expensive and time-consuming monitoring. The real-time data are then used to update geological and geomechanical models of the excavation, and to determine the optimal, construction sequences and stages, and structural support. Virtual environment (VE) systems are employed to allow virtual walk-throughs inside an excavation, observe geologic conditions, perform virtual construction operations, and investigate stability of the excavation via computer simulation to steer the next stages of construction.

  • PDF