• Title/Summary/Keyword: holling-type II functional response

Search Result 17, Processing Time 0.026 seconds

Dynamics of Vaccination Model with Holling Type II Functional Response

  • Bhatia, Sumit Kaur;Chauhan, Sudipa;Nasir, Umama
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.2
    • /
    • pp.319-334
    • /
    • 2020
  • We propose a mathematical model with Holling type II functional response, to study the dynamics of vaccination. In order to make our model more realistic, we have incorporated the recruitment of infected individuals as a continuous process. We have assumed that vaccination cannot be perfect and there is always a possibility of re-infection. We have obtained the existence of a disease free and endemic equilibrium point, when the recruitment of infective is not considered and also obtained the existence of at least one endemic equilibrium point when recruitment of infective is considered. We have proved that if Rv < 1, disease free equilibrium is locally asymptotically stable, which leads to the elimination of the disease from the population. The persistence of the model has also been established. Numerical simulations have been done to establish the results obtained.

Permanence of an impulsive food web system with Holling-type II functional responses

  • Baek, Hun-Ki;Park, Jun-Pyo;Do, Young-Hae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.211-217
    • /
    • 2009
  • In this paper, we are studying the property for permanence of a three species food chain system with impulsive perturbations and Holling type II functional response, species which is important concept or property in ecological systems. Specially, we give the conditions for the permanence of this system. To do it, we consider the comparison method which is typical skill happened in impulsive differential inequalities. In addition, we reaffirm our results by using a numerical example.

  • PDF

DYNAMICS OF A ONE-PREY AND TWO-PREDATOR SYSTEM WITH TWO HOLLING TYPE FUNCTIONAL RESPONSES AND IMPULSIVE CONTROLS

  • Baek, Hunki
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.3
    • /
    • pp.151-167
    • /
    • 2012
  • In this paper, we investigate the dynamic behaviors of a one-prey and two-predator system with Holling-type II functional response and defensive ability by introducing a proportion that is periodic impulsive harvesting for all species and a constant periodic releasing, or immigrating, for predators at different fixed time. We establish conditions for the local stability and global asymptotic stability of prey-free periodic solutions by using Floquet theory for the impulsive equation, small amplitude perturbation skills. Also, we prove that the system is uniformly bounded and is permanent under some conditions via comparison techniques. By displaying bifurcation diagrams, we show that the system has complex dynamical aspects.

QUALITATIVE ANALYSIS OF A DIFFUSIVE FOOD WEB CONSISTING OF A PREY AND TWO PREDATORS

  • Shi, Hong-Bo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1827-1840
    • /
    • 2013
  • This paper is concerned with the positive steady states of a diffusive Holling type II predator-prey system, in which two predators and one prey are involved. Under homogeneous Neumann boundary conditions, the local and global asymptotic stability of the spatially homogeneous positive steady state are discussed. Moreover, the large diffusion of predator is considered by proving the nonexistence of non-constant positive steady states, which gives some descriptions of the effect of diffusion on the pattern formation.

DYNAMIC ANALYSIS OF A PERIODICALLY FORCED HOLLING-TYPE II TWO-PREY ONE-PREDATOR SYSTEM WITH IMPULSIVE CONTROL STRATEGIES

  • Kim, Hye-Kyung;Baek, Hun-Ki
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.4
    • /
    • pp.225-247
    • /
    • 2010
  • In this paper, we establish a two-competitive-prey and one-predator Holling type II system by introducing a proportional periodic impulsive harvesting for all species and a constant periodic releasing, or immigrating, for the predator at different fixed time. We show the boundedness of the system and find conditions for the local and global stabilities of two-prey-free periodic solutions by using Floquet theory for the impulsive differential equation, small amplitude perturbation skills and comparison techniques. Also, we prove that the system is permanent under some conditions and give sufficient conditions under which one of the two preys is extinct and the remaining two species are permanent. In addition, we take account of the system with seasonality as a periodic forcing term in the intrinsic growth rate of prey population and then find conditions for the stability of the two-prey-free periodic solutions and for the permanence of this system. We discuss the complex dynamical aspects of these systems via bifurcation diagrams.

EXISTENCE OF NON-CONSTANT POSITIVE SOLUTION OF A DIFFUSIVE MODIFIED LESLIE-GOWER PREY-PREDATOR SYSTEM WITH PREY INFECTION AND BEDDINGTON DEANGELIS FUNCTIONAL RESPONSE

  • MELESE, DAWIT
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.393-407
    • /
    • 2022
  • In this paper, a diffusive predator-prey system with Beddington DeAngelis functional response and the modified Leslie-Gower type predator dynamics when a prey population is infected is considered. The predator is assumed to predate both the susceptible prey and infected prey following the Beddington-DeAngelis functional response and Holling type II functional response, respectively. The predator follows the modified Leslie-Gower predator dynamics. Both the prey, susceptible and infected, and predator are assumed to be distributed in-homogeneous in space. A reaction-diffusion equation with Neumann boundary conditions is considered to capture the dynamics of the prey and predator population. The global attractor and persistence properties of the system are studied. The priori estimates of the non-constant positive steady state of the system are obtained. The existence of non-constant positive steady state of the system is investigated by the use of Leray-Schauder Theorem. The existence of non-constant positive steady state of the system, with large diffusivity, guarantees for the occurrence of interesting Turing patterns.

Functional response and suppression of prey population if Amblyseius womersleyi Schicha(Acarina:Phytoseiidae) to Tetranychus Kanzawai Kishi-da(Acarina: Tetranychidae) (긴털이리응애(Amblyseius Womersleyi Schicha)의 간자와응애에대한 기능반응 및 개체군 억제에 관한 연구)

  • 김도익;이승찬
    • Korean journal of applied entomology
    • /
    • v.35 no.2
    • /
    • pp.126-131
    • /
    • 1996
  • These experiments were conducted in the laboratory conditions to determine the prey consumption of a predaciousphytoseiid mite, Amblyseius womersleyi Schicha, and its ability to regulate the population of tea redspider mite, Tetranychus kanzawai Kishida. The functional response curve of the adult A. womersleyi to thedensity of eggs, larvae, and nymphs of T. kanzawai indicated Holling's Type 11: the consumption of prey bythe adult A. womersleyi increased with the prey density but the consumption rate decreased. The critical initialratio to suppress the prey population by the predator seemed to be 32:l @rey:predator) at 25"C, and 16:l at20$^{\circ}$C on kidney bean plant. The predator could not regulate any initial ratio of the prey population at 15$^{\circ}$C.^{\circ}$C.

  • PDF

STABILITY ANALYSIS FOR PREDATOR-PREY SYSTEMS

  • Shim, Seong-A
    • The Pure and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.211-229
    • /
    • 2010
  • Various types of predator-prey systems are studied in terms of the stabilities of their steady-states. Necessary conditions for the existences of non-negative constant steady-states for those systems are obtained. The linearized stabilities of the non-negative constant steady-states for the predator-prey system with monotone response functions are analyzed. The predator-prey system with non-monotone response functions are also investigated for the linearized stabilities of the positive constant steady-states.

MEAN SQUARE STABILITY IN A MODIFIED LESLIE-GOWER AND HOLLING-TYPE II PREDATOR-PREY MODEL

  • Pal, Pallav Jyoti;Sarwardi, Sahabuddin;Saha, Tapan;Mandal, Prashanta Kumar
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.781-802
    • /
    • 2011
  • Of concern in the paper is a Holling-Tanner predator-prey model with modified version of the Leslie-Gower functional response. Dynamical behaviours such as stability, permanence and Hopf bifurcation have been carried out deterministically. Using the normal form theory and center manifold theorem, the explicit formulae determining the stability and direction of Hopf bifurcation have been derived. The deterministic model is extended to a stochastic one by perturbing the growth equation of prey and predator by white and colored noises and finally the mean square stability of the stochastic model systems is investigated analytically. An extensive quantitative analysis has been performed based on numerical computation so as to validate the applicability of the proposed mathematical model.

EFFECT OF TIME DELAY IN AN AUTOTROPH-HERBIVORE SYSTEM WITH NUTRIENT CYCLING

  • Das, Kalyan;Sarkar, A.K.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.597-606
    • /
    • 1998
  • In the present study we consider a mathematical model of a non-interactive type autotroph-herbivore system in which the amount of autotroph biomass consumed by the herbivore is assumed to follow a Holling type II functional response. We have also incorpo-rated discrete time delays in the numerical response term to represent a delay due to gestation and in the recycling term which represent a delay due to gestation and in the recycling term which represents the time required for bacterial decomposition. We have derived con-dition for global asymptotic stability of the model in the absence of delays. Conditions for delay-induced asymptotic stability of the steady state are also derived. The length of the delay preserving stability has been estimated and interpreted ecologically.