• Title/Summary/Keyword: multiclass support vector machine

Search Result 35, Processing Time 0.024 seconds

Multiclass Classification via Least Squares Support Vector Machine Regression

  • Shim, Joo-Yong;Bae, Jong-Sig;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.3
    • /
    • pp.441-450
    • /
    • 2008
  • In this paper we propose a new method for solving multiclass problem with least squares support vector machine(LS-SVM) regression. This method implements one-against-all scheme which is as accurate as any other approach. We also propose cross validation(CV) method to select effectively the optimal values of hyper-parameters which affect the performance of the proposed multiclass method. Experimental results are then presented which indicate the performance of the proposed multiclass method.

Multiclass Support Vector Machines with SCAD

  • Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.5
    • /
    • pp.655-662
    • /
    • 2012
  • Classification is an important research field in pattern recognition with high-dimensional predictors. The support vector machine(SVM) is a penalized feature selector and classifier. It is based on the hinge loss function, the non-convex penalty function, and the smoothly clipped absolute deviation(SCAD) suggested by Fan and Li (2001). We developed the algorithm for the multiclass SVM with the SCAD penalty function using the local quadratic approximation. For multiclass problems we compared the performance of the SVM with the $L_1$, $L_2$ penalty functions and the developed method.

An analysis of satisfaction index on computer education of university using kernel machine (커널머신을 이용한 대학의 컴퓨터교육 만족도 분석)

  • Pi, Su-Young;Park, Hye-Jung;Ryu, Kyung-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.921-929
    • /
    • 2011
  • In Information age, the academic liberal art Computer education course set up goals for promoting computer literacy and for developing the ability to cope actively with in Information Society and for improving productivity and competition among nations. In this paper, we analyze on discovering of decisive property and satisfaction index to have a influence on computer education on university students. As a preprocessing method, the proposed method select optimum property using correlation feature selection of machine learning tool based on Java and then we use multiclass least square support vector machine based on statistical learning theory. After applying that compare with multiclass support vector machine and multiclass least square support vector machine, we can see the fact that the proposed method have a excellent result like multiclass support vector machine in analysis of the academic liberal art computer education satisfaction index data.

A Novel Feature Selection Method for Output Coding based Multiclass SVM (출력 코딩 기반 다중 클래스 서포트 벡터 머신을 위한 특징 선택 기법)

  • Lee, Youngjoo;Lee, Jeongjin
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.795-801
    • /
    • 2013
  • Recently, support vector machine has been widely used in various application fields due to its superiority of classification performance comparing with decision tree and neural network. Since support vector machine is basically designed for the binary classification problem, output coding method to analyze the classification result of multiclass binary classifier is used for the application of support vector machine into the multiclass problem. However, previous feature selection method for output coding based support vector machine found the features to improve the overall classification accuracy instead of improving each classification accuracy of each classifier. In this paper, we propose the novel feature selection method to find the features for maximizing the classification accuracy of each binary classifier in output coding based support vector machine. Experimental result showed that proposed method significantly improved the classification accuracy comparing with previous feature selection method.

Multiclass LS-SVM ensemble for large data

  • Hwang, Hyungtae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1557-1563
    • /
    • 2015
  • Multiclass classification is typically performed using the voting scheme method based on combining binary classifications. In this paper we propose multiclass classification method for large data, which can be regarded as the revised one-vs-all method. The multiclass classification is performed by using the hat matrix of least squares support vector machine (LS-SVM) ensemble, which is obtained by aggregating individual LS-SVM trained on each subset of whole large data. The cross validation function is defined to select the optimal values of hyperparameters which affect the performance of multiclass LS-SVM proposed. We obtain the generalized cross validation function to reduce computational burden of cross validation function. Experimental results are then presented which indicate the performance of the proposed method.

Variable selection for multiclassi cation by LS-SVM

  • Hwang, Hyung-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.959-965
    • /
    • 2010
  • For multiclassification, it is often the case that some variables are not important while some variables are more important than others. We propose a novel algorithm for selecting such relevant variables for multiclassification. This algorithm is base on multiclass least squares support vector machine (LS-SVM), which uses results of multiclass LS-SVM using one-vs-all method. Experimental results are then presented which indicate the performance of the proposed method.

Gesture Recognition Method using Tree Classification and Multiclass SVM (다중 클래스 SVM과 트리 분류를 이용한 제스처 인식 방법)

  • Oh, Juhee;Kim, Taehyub;Hong, Hyunki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.238-245
    • /
    • 2013
  • Gesture recognition has been widely one of the research areas for natural user interface. This paper presents a novel gesture recognition method using tree classification and multiclass SVM(Support Vector Machine). In the learning step, 3D trajectory of human gesture obtained by a Kinect sensor is classified into the tree nodes according to their distributions. The gestures are resampled and we obtain the histogram of the chain code from the normalized data. Then multiclass SVM is applied to the classified gestures in the node. The input gesture classified using the constructed tree is recognized with multiclass SVM.

Vector space based augmented structural kinematic feature descriptor for human activity recognition in videos

  • Dharmalingam, Sowmiya;Palanisamy, Anandhakumar
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.499-510
    • /
    • 2018
  • A vector space based augmented structural kinematic (VSASK) feature descriptor is proposed for human activity recognition. An action descriptor is built by integrating the structural and kinematic properties of the actor using vector space based augmented matrix representation. Using the local or global information separately may not provide sufficient action characteristics. The proposed action descriptor combines both the local (pose) and global (position and velocity) features using augmented matrix schema and thereby increases the robustness of the descriptor. A multiclass support vector machine (SVM) is used to learn each action descriptor for the corresponding activity classification and understanding. The performance of the proposed descriptor is experimentally analyzed using the Weizmann and KTH datasets. The average recognition rate for the Weizmann and KTH datasets is 100% and 99.89%, respectively. The computational time for the proposed descriptor learning is 0.003 seconds, which is an improvement of approximately 1.4% over the existing methods.

Fixed size LS-SVM for multiclassification problems of large data sets

  • Hwang, Hyung-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.3
    • /
    • pp.561-567
    • /
    • 2010
  • Multiclassification is typically performed using voting scheme methods based on combining a set of binary classifications. In this paper we use multiclassification method with a hat matrix of least squares support vector machine (LS-SVM), which can be regarded as the revised one-against-all method. To tackle multiclass problems for large data, we use the $Nystr\ddot{o}m$ approximation and the quadratic Renyi entropy with estimation in the primal space such as used in xed size LS-SVM. For the selection of hyperparameters, generalized cross validation techniques are employed. Experimental results are then presented to indicate the performance of the proposed procedure.

Support vector ensemble for incipient fault diagnosis in nuclear plant components

  • Ayodeji, Abiodun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1306-1313
    • /
    • 2018
  • The randomness and incipient nature of certain faults in reactor systems warrant a robust and dynamic detection mechanism. Existing models and methods for fault diagnosis using different mathematical/statistical inferences lack incipient and novel faults detection capability. To this end, we propose a fault diagnosis method that utilizes the flexibility of data-driven Support Vector Machine (SVM) for component-level fault diagnosis. The technique integrates separately-built, separately-trained, specialized SVM modules capable of component-level fault diagnosis into a coherent intelligent system, with each SVM module monitoring sub-units of the reactor coolant system. To evaluate the model, marginal faults selected from the failure mode and effect analysis (FMEA) are simulated in the steam generator and pressure boundary of the Chinese CNP300 PWR (Qinshan I NPP) reactor coolant system, using a best-estimate thermal-hydraulic code, RELAP5/SCDAP Mod4.0. Multiclass SVM model is trained with component level parameters that represent the steady state and selected faults in the components. For optimization purposes, we considered and compared the performances of different multiclass models in MATLAB, using different coding matrices, as well as different kernel functions on the representative data derived from the simulation of Qinshan I NPP. An optimum predictive model - the Error Correcting Output Code (ECOC) with TenaryComplete coding matrix - was obtained from experiments, and utilized to diagnose the incipient faults. Some of the important diagnostic results and heuristic model evaluation methods are presented in this paper.