• Title/Summary/Keyword: spectral flatness

Search Result 15, Processing Time 0.023 seconds

Speech Enhancement Using Lip Information and SFM (입술정보 및 SFM을 이용한 음성의 음질향상알고리듬)

  • Baek, Seong-Joon;Kim, Jin-Young
    • Speech Sciences
    • /
    • v.10 no.2
    • /
    • pp.77-84
    • /
    • 2003
  • In this research, we seek the beginning of the speech and detect the stationary speech region using lip information. Performing running average of the estimated speech signal in the stationary region, we reduce the effect of musical noise which is inherent to the conventional MlMSE (Minimum Mean Square Error) speech enhancement algorithm. In addition to it, SFM (Spectral Flatness Measure) is incorporated to reduce the speech signal estimation error due to speaking habit and some lacking lip information. The proposed algorithm with Wiener filtering shows the superior performance to the conventional methods according to MOS (Mean Opinion Score) test.

  • PDF

A Speech Waveform Forgery Detection Algorithm Based on Frequency Distribution Analysis (음성 주파수 분포 분석을 통한 편집 의심 지점 검출 방법)

  • Heo, Hee-Soo;So, Byung-Min;Yang, IL-Ho;Yu, Ha-Jin
    • Phonetics and Speech Sciences
    • /
    • v.7 no.4
    • /
    • pp.35-40
    • /
    • 2015
  • We propose a speech waveform forgery detection algorithm based on the flatness of frequency distribution. We devise a new measure of flatness which emphasizes the local change of the frequency distribution. Our measure calculates the sum of the differences between the energies of neighboring frequency bands. We compare the proposed measure with conventional flatness measures using a set of a large amount of test sounds. We also compare- the proposed method with conventional detection algorithms based on spectral distances. The results show that the proposed method gives lower equal error rate for the test set compared to the conventional methods.

Heart Murmur Detection Algorithm based on Spectral Flatness (주파수 평탄도에 기반한 심잡음 검출 알고리즘)

  • Lee, Yunjung;Lee, Gihyoun;Na, Sung Dae;Seong, Ki Woong;Cho, Jin Ho;Kim, Myoung Nam
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.3
    • /
    • pp.557-566
    • /
    • 2016
  • Heart sounds generated by the beating heart and blood flow reflect the turbulence created when the heart valves snap shut. Cardiac diagnosis is typically started by an auscultation using a stethoscope, from which a medical doctor, depending on his hearing capabilities and training, listens and interprets the acoustic signal. This method of diagnostic is uncertain, mostly due to the fact that human ear loses the acoustic frequency sensitivity through the years. Even though an auscultation has some weaknesses like uncertainty, it is considered as a primary tool due to its simplicity. In this paper, heart murmur detection algorithm is proposed using time and frequency characteristics of heart sound. The propose heart murmur detection method adapted conventional primary heart sound detection method in time domain and modified spectral flatness method in frequency domain for detecting heart murmurs. From experimental results, it is confirmed that the proposed algorithm detect the heart murmurs efficiently.

Voice Activity Detection Based on Real-Time Discriminative Weight Training (실시간 변별적 가중치 학습에 기반한 음성 검출기)

  • Chang, Sang-Ick;Jo, Q-Haing;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.4
    • /
    • pp.100-106
    • /
    • 2008
  • In this paper we apply a discriminative weight training employing power spectral flatness measure (PSFM) to a statistical model-based voice activity detection (VAD) in various noise environments. In our approach, the VAD decision rule is expressed as the geometric mean of optimally weighted likelihood ratio test (LRT) based on a minimum classification error (MCE) method which is different from the previous works in th at different weights are assigned to each frequency bin and noise environments depending on PSFM. According to the experimental results, the proposed approach is found to be effective for the statistical model-based VAD using the LRT.

Improved Single Channel Speech Enhancement Algorithm Using Adaptive Postfiltering

  • Song, Eunwoo;Kang, Hong-Goo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.122-125
    • /
    • 2011
  • In real environment, background noise exists everywhere and degrades the performance of system. To reduce this distortion, a speech enhancement algorithm can be very useful and variety methods have been proposed. In this paper, we propose a postfilter to improve the performance of optimally modified log-spectral amplitude (OM-LSA) estimator. Proposed algorithm uses the formant postfilter to minimize perceptual distortion caused by background noise. We adjust an emphasizing parameter which is varied by spectral flatness and first reflection coefficient. The performance of the proposed algorithm is evaluated by measuring the log-spectral distance (LSD) and the perceptual evaluation of speech quality (PESQ) score. The test results show the improvement of proposed algorithm compared to conventional OM-LSA.

  • PDF

Variable and Flexible Optical Frequency Comb Source using Dual Mach Zehnder Modulator and Phase Modulator

  • Naveed, Abbas;Choi, Bong-Soo;Tran, ThanhTuan;Seo, Dongsun
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.385-391
    • /
    • 2016
  • We demonstrated experimentally a variable optical frequency comb source using a cascaded dual parallel Mach Zehnder modulator (DPMZM) and a phase modulator (PM). With this simple configuration and applying low drive voltages, we generated variable comb source composed of spectral lines 3, 5, 7, 9 and 11 with 10-GHz frequency spacing, also generated 2 and 3 spectral lines with 20 GHz frequency spacing. The generated comb source maintains high spectral coherence across the entire bandwidth with good spectral flatness (within 1-dB for 2, 3, 5, 7 comb lines, within 2-dB for 9-comb lines and within 3-dB for 11 comb lines). The flat and variable comb source is mainly achieved by manipulating 6 operating parameters of DPMZM, setting RF amplifier gain, connected at phase modulator and phase shifters. Hence the method is simple and offers great flexibility in achieving flat and variable comb spectrum, which is experimentally demonstrated. This brings advantages of power efficiency due to low driving voltages, simplicity and cost effectiveness to the system.

Generalized Robust Multichannel Frequency-Domain LMS Algorithms for Blind Channel Identification

  • Chung, Ik-Joo;Clements, Mark A.
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.130-133
    • /
    • 2012
  • Recently, several noise-robust adaptive multichannel LMS algorithms have been proposed based on the spectral flatness of the estimated channel coefficients in the presence of additive noise. In this work, we propose a general form for the algorithms that integrates the existing algorithms into a common framework. Computer simulation results are presented and demonstrate that a new proposed algorithm gives better performance compared to existing algorithms in noisy environments.

Photogrammetry 기법을 활용한 MSC 설치면의 정밀 측정

  • Woo, Sung-Hyun;Kim, Hong-Bae;Moon, Sang-Mu;Im, Jong-Min
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.126-133
    • /
    • 2004
  • Photogrammetry, as its name implies, is a 3-dimensional coordinate measuring technique that uses photographs as the fundamental medium for metrology. In the last few years the accuracy of photogrammetry has increased dramatically thanks to the rapid advance of digital camera manufacturing technique. This paper discusses photogrammetric measurement of the interface surface of MSC(Multi-Spectral Camera), which is a main payload of KOMPSAT-2. Total 24 paper targets on the objective surfaces and two scale bars calibrated with high accuracy were used for measurement, and multiple images were taken from 11 different camera angles by using a spacecraft rotation dolly. As a result of analysis, 3D coordinates of each targeted point were obtained and the flatness value based on the selected reference plane was calculated and compared with the pre-determined requirement. The technique acquired by this study is expected to be used for the 3D precise measurement of ultra-light weight and inflatable space structures such as a satellite antenna and a solar array.

  • PDF

A Weighted Feature Voting Approach for Robust and Real-Time Voice Activity Detection

  • Moattar, Mohammad Hossein;Homayounpour, Mohammad Mehdi
    • ETRI Journal
    • /
    • v.33 no.1
    • /
    • pp.99-109
    • /
    • 2011
  • This paper concerns a robust real-time voice activity detection (VAD) approach which is easy to understand and implement. The proposed approach employs several short-term speech/nonspeech discriminating features in a voting paradigm to achieve a reliable performance in different environments. This paper mainly focuses on the performance improvement of a recently proposed approach which uses spectral peak valley difference (SPVD) as a feature for silence detection. The main issue of this paper is to apply a set of features with SPVD to improve the VAD robustness. The proposed approach uses a weighted voting scheme in order to take the discriminative power of the employed feature set into account. The experiments show that the proposed approach is more robust than the baseline approach from different points of view, including channel distortion and threshold selection. The proposed approach is also compared with some other VAD techniques for better confirmation of its achievements. Using the proposed weighted voting approach, the average VAD performance is increased to 89.29% for 5 different noise types and 8 SNR levels. The resulting performance is 13.79% higher than the approach based only on SPVD and even 2.25% higher than the not-weighted voting scheme.

Design and Control of Gain-Flattened Erbium-Doped Fiber Amplifier for WDM Applications

  • Kim, Hyang-Kyun;Park, Seo-Yeon;Lee, Dong-Ho;Park, Chang-Soo
    • ETRI Journal
    • /
    • v.20 no.1
    • /
    • pp.28-36
    • /
    • 1998
  • A simple experimental method to design gain-flattened erbium-doped fiber amplifier is proposed and demonstrated based on the two linear relations between the output power and the pump power, and between the gain and the length of the eribium-doped fiber at the gain flattened state. The spectral gain variation of the eribium-doped fiber amplifiber constructed by this method was less than 0.4 dB over 12 nm (1,545~1,557nm) wavelength region. The gain flatness is also controlled within 0.4 dB over the input power range of -30~-15dBm/ch through the feedback control utilizing the amplified spontaneous emission power in the 1,530 nm region.

  • PDF