Highly filled AIN/epoxy composites for microelectronic encapsulation

반도체 봉지용 고충진 AIN/Epoxy 복합재료

  • Published : 2000.04.01

Abstract

Increased temperature adversely affects the reliability of a device. So, package material should have high thermal diffusion, i.e., high thermal conductivity. And, there are several other physical properties of polymeric materials that are important to microelectronics packaging, some of which are a low dielectric constant, a low coefficient of thermal expansion (CTE), and a high flexural strength. In this study, to get practical maximum packing fraction of AIN (granular type) filled EMC, the properties such as the spiral flow, thermal conductivity, CTE, and water resistance of AIN-filled EMC (65-vol%) were evaluated according to the size of AIN and the filler-size distribution. Also, physical properties of AIN filled EMC above 65-vol% were evaluated according to increasing AIN content at the point of maximum packing fraction (highly loading condition). The high loading conditions of EMC were set $D_L/D_S$=12 and $X_S$=0.25 like as filler of sphere shape and the AIN filled EMC in this conditions can be obtained satisfactory fluidity up to 70-vol%. As a result, the AIN filled EMC (70-vol%) at high loading condition showed improved thermal conductivity (about 6 W/m-K), dielectric constant (2.0~3.0), CTE(less than 14 ppm/$^{\circ}C$) and water resistance. So, the AIN filled EMC (70-vol%) at high loading condition meets the requirement fur advanced microelectronic packaging materials.