GROUPOID AS A COVERING SPACE

  • Published : 1984.08.01

Abstract

Let X be a topological space. We consider a groupoid G over X and the quotient groupoid G/N for any normal subgroupoid N of G. The concept of groupoid (topological groupoid) is a natural generalization of the group(topological group). An useful example of a groupoid over X is the foundamental groupoid .pi.X whose object group at x.mem.X is the fundamental group .pi.(X, x). It is known [5] that if X is locally simply connected, then the topology of X determines a topology on .pi.X so that is becomes a topological groupoid over X, and a covering space of the product space X*X. In this paper the concept of the locally simple connectivity of a topological space X is applied to the groupoid G over X. That concept is defined as a term '1-connected local subgroupoid' of G. Using this concept we topologize the groupoid G so that it becomes a topological groupoid over X. With this topology the connected groupoid G is a covering space of the product space X*X. Further-more, if ob(.overbar.G)=.overbar.X is a covering space of X, then the groupoid .overbar.G is also a covering space of the groupoid G. Since the fundamental groupoid .pi.X of X satisfying a certain condition has an 1-connected local subgroupoid, .pi.X can always be topologized. In this case the topology on .pi.X is the same as that of [5]. In section 4 the results on the groupoid G are generalized to the quotient groupoid G/N. For any topological groupoid G over X and normal subgroupoid N of G, the abstract quotient groupoid G/N can be given the identification topology, but with this topology G/N need not be a topological groupoid over X [4]. However the induced topology (H) on G makes G/N (with the identification topology) a topological groupoid over X. A final section is related to the covering morphism. Let G$_{1}$ and G$_{2}$ be groupoids over the sets X$_{1}$ and X$_{2}$, respectively, and .phi.:G$_{1}$.rarw.G$_{2}$ be a covering spimorphism. If X$_{2}$ is a topological space and G$_{2}$ has an 1-connected local subgroupoid, then we can topologize X$_{1}$ so that ob(.phi.):X$_{1}$.rarw.X$_{2}$ is a covering map and .phi.: G$_{1}$.rarw.G$_{2}$ is a topological covering morphism.

Keywords