Screening of Inhibitory Activity of Medicinal Plants against Heparinase

수종 생약의 Heparinase 저해활성 검색

  • Ahn, Soon-Cheol (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Bo-Yeon (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Oh, Won-Keun (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Myung-Sun (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Bae, Eun-Young (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kang, Dae-Wook (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ahn, Jong-Seog (Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Published : 2002.06.30

Abstract

The methanol extracts of 132 herbal medicines were screened for the inhibitory activity against heparinase enzyme from Flavobacterium heparinum. Eleven medicinal plants, Amomum xanthiodides, Agrimonia pilosa, Paeonia lactiflora, Rubia cordifolia, Sanguisorba officinalis, Torrega grandis, Morus alba, Gleditsia sinensis, Crataegus pinnatifida, Cornus officinalis, Paeonia japonica showed potent inhibition on heparinase activity. The active substituents of those herbal medicine could be extracted into butanol fraction and the inhibitory compounds of Morus alba are now isolating.

Keywords

References

  1. Kjellen, L. and Lindahl, U. (1991) Proteoglycans: structures and interactions, Ann. Rev. Biochem. 60: 443-475 https://doi.org/10.1146/annurev.bi.60.070191.002303
  2. Bernfield, M., Gotte, M., Park, P. W., Reizes, O., Fitzgerald, M. L., Lincecum, J. and Zako, M. (1999) Functions of cell surface heparan sulphate proteoglycans. Ann. Rev. Biochem. 68: 719-777
  3. Sasisekharan, R., Bulmer, M., Moremen, K. W., Cooney, C. L. and Langer, R. (1993) Cloning and expression of heparinase I gene from Flavobacterium heparium. Proc. Natl. Acad. Sci. USA. 90: 3660-3664 https://doi.org/10.1073/pnas.90.8.3660
  4. Jandik, K. A., Gu, K. and Linhardt, R. J. (1994) Action pattern of polysaccharide lyases on glycosaminoglycans. Gtycobiotosy 4: 289-296
  5. Bame K.J. (2001) Heparanases: Endoglycosidases that degrade heparan sulfate proteoglycans. GIycobiotogy 11: 91R-98R
  6. Nakajima, M., Irimura, T., Di Ferrante., N. and Nicolson, G. L. (1983) Heparan sulfate degradation: relation to tumor invasive and metastatic properties of mouse B16 melanoma sublines. Science 220: 611-613 https://doi.org/10.1126/science.6220468
  7. Nakajima, M., Irimura, T. and Nicolson, G. L. (1988) Heparanases and tumor metastasis. J. Cell. Biochem. 36: 157-167 https://doi.org/10.1002/jcb.240360207
  8. Hulett, M. D., Freeman, C., Hamdorf, B. J., Baker, R. T, Harris, M. J. and Parish, C. R. (1999) Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nature Med. 5: 803-809 https://doi.org/10.1038/10525
  9. Vlodavsky, I., Friedmann, Y, Elkin, M., Aingom, H.,Atzmon, R., Ishai-Michaeli, R., Bitan, M., Pappo, O., Peretz,T., Michal, I., Spector, L. and Pecker, I. (1999) Mammalianheparanase: gene cloning, expression and function in tumorprogression and metastasis. Nature Med. 5: 793-802. https://doi.org/10.1038/10518
  10. Bashkin, P., Doctrow, S., Klagsbrun, M., Svahn, C. M., Folkman, J. and Vlodavsky, I. (1989) Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparinase and heparin-like molecules. Biochemistry 28: 1737-1743 https://doi.org/10.1021/bi00430a047
  11. Liuzzo, J. P. and Moscatelli, D. (1996) Human leukemia cell lines bind basic fibroblast growth factor (FGF) on FGF receptors and heparan sulfates: downmodulation of FGF receptors by phorbol ester. BIood 87: 244-255
  12. Vlodavsky, I., Miao, H., Medalion, B., Danagher, P. and Ron, D. (1996) Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer and Metastasis Reviews 15: 177-186 https://doi.org/10.1007/BF00437470
  13. Herr, B. A., Qrnitz, M. D., Sasisekharan, R., Venkataraman, G. and Waksman, G. (1997) Heparin-induced self-associa tion offibroblast growth factor-2. J. Biot. Chem. 272: 16382-16389 https://doi.org/10.1074/jbc.272.26.16382
  14. Chang, Z., Meyer, K., Rapraeger, A. and Friedl, A. (2000) Differential ability of heparan sulfate proteoglycans to assemble the fibroblast growth factor receptor complex in situ.. FASEB J. 14: 137 -144 https://doi.org/10.1096/fasebj.14.1.137
  15. Freeman, C. and Parish, C. R. (1998) Human platelet heparanase: purification, characterization and catalytic activity. Biochem. J. 330: 1341-1350 https://doi.org/10.1042/bj3301341
  16. Nakajima, M., Dechavingy, A., Johnson, C. E., Hamada, J., Stein, C. A. and Nicolson, G. L. (1991) Suramin: a potent inhibitor of melanoma heparanase and invasion. J. Biol. Chem. 266: 9661-9666
  17. Takatsu, T., Takahashi, M., Kawase, Y., Enokita, R., Okazaki, T., Matsukawa, H., Ogawa, K., Sakaida, Y., Kagasaki, T., Kinoshita, T., Nakajima, M. and Tanzawa, K. (1996) A-72363 A-l, A-2, and -C, novel heparanase inhibitors from Streptomyces nobilis SANK 60912. I. Taxonomy of producing organism, fermentation, isolation, and structure elucidation. J. Antibiotics 49: 54-60 https://doi.org/10.7164/antibiotics.49.54
  18. Paiish, R. C., Freeman, C., Brown, J, K., Francis, J. D. and Cowden, B. W. (1999) Identification of sulfated oligosac-chahde-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Canser Res. 59: 3433-3441
  19. Miao, H., Elkin, M., Aingom, E., Ishai-Michaeli, R., Stein, A. C. and Vlodavsky, I. (1999) Inhibition of heparanase activity and tumor metastasis by laminahn sulfate and synthetic phosphorothioate oligodeoxynucleotides. Int. J. Cancer 83: 424-431 https://doi.org/10.1002/(SICI)1097-0215(19991029)83:3<424::AID-IJC20>3.0.CO;2-L
  20. Takahashi S., Kuzuhara H. and Nakajima M. (2001) Design and synthesis of a heparanase inhibitor with pseudodisacchande structure. Tetrahedron 57: 6915-6926 https://doi.org/10.1016/S0040-4020(01)00642-1
  21. Tyrrel, J.D., Kilfeather, S. and Page, P. C. (1995) Therapeutic uses of heapiin beyond its traditional role as an anticoagulant. Trend in Pharmacol. Science (TiPS) 16: 198-204 https://doi.org/10.1016/S0165-6147(00)89022-7
  22. Ko, H. R., Kim, B. Y, Oh, W. K., Kang, D. O., Ahn, S. C., Mheen, T. I. and Ahn, J. S. (2000) CRM646-A and B, Novel fungal metabolites that inhibit hepaiinase. J. Antibiotics 53: 384-387
  23. Kussie, P. H., Hulmes, J. D., Ludwig, D. L., Patel, S., Navarro, E. C., Seddon, A. P., Giorgio, N. A. and Bohlen, P.(1999) Cloning and functional expression of a human heparanase gene. Biochem. Biophys. Res. Commun. 261: 183-187 https://doi.org/10.1006/bbrc.1999.0962
  24. Moscatelli, D. (1988) Metabolism of receptor-bound and matrix-bound basic fibroblast growth factor by bovine endothelial cells. J. Cell Biol. 107: 753-759 https://doi.org/10.1083/jcb.107.2.753
  25. Savion, N., Vlodavsky, I. and Fuks, Z. (1984) Interaction of T lymphocytes and macrophages with cultured vascular endothelial cells: attachment, invasion, and subsequent degradation of the subendothelial extracellular matrix. J. Cell Physiol. 118: 169-178 https://doi.org/10.1002/jcp.1041180209
  26. Naparstek, Y., Cohen, I. R., Fuks, Z. and Vlodavsky, I. (1984) Activated T lymphocytes produce a matrix-degrading heparan sulphate endoglycosidase. Nature 310: 241-244 https://doi.org/10.1038/310241a0
  27. Ihrcke, N. S., Parker, W., Reissner, K. J. and Platt, J. L. (1998) Regulation of platelet heparanase during inflammation; role of pH and proteinases. J. Cell Physiol. 175: 255-267 https://doi.org/10.1002/(SICI)1097-4652(199806)175:3<255::AID-JCP3>3.0.CO;2-N
  28. Vaday G. G. and Lider O. (2000) Extracellular matrix moieties, cytokines, and enzymes: dynamic effects on immune cell behavior and inflammation. J. Leukocyte. Biot. 67: 149-159 https://doi.org/10.1002/jlb.67.2.149
  29. Ihrcke N. S., Parker, W., Reissner, K. J. and PlaC, J. L. (1998) Reguladon of platelet heparanase during inflammation: Role of pH and proteinases. J. CeII. Physiol. 175: 255-267 https://doi.org/10.1002/(SICI)1097-4652(199806)175:3<255::AID-JCP3>3.0.CO;2-N
  30. Bartlett, M. R., Cowden, W. B. and Parish, C. R. (1995) Diffe- rential effects of the anti-inflammatory compounds hepann, mannose-6-phosphate, and castanospermine on degradation of the vascular basement membrane by leukocytes, endothelial cells, and platelets. J. Leukocyte. Biol. 57' 207-213 https://doi.org/10.1002/jlb.57.2.207
  31. Parish, R. C., Hindmarsh, J. E., BartleK, M.R. Staykova, M.A., Cowden, B. W. and Willenborg, O. D. (1998) Treatment of central nervous system inflammation with inhibitors of basement membrane degradation. Immunol. Cell BioI. 76: 104-113 https://doi.org/10.1046/j.1440-1711.1998.00722.x
  32. Lindahl, U., Lidholt, K., Spillmann, D. and Kjellen, L. (1994) More to heparin than anticoagulation. Thromb. Res. 75: 1-32 https://doi.org/10.1016/0049-3848(94)90136-8