Stress Intensity Factors for Elliptical Arc Through Cracks in Mechanical Joints by Virtual Crack Closure Technique

  • Heo, Sung-Pil (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Yang, Won-Ho (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Kim, Cheol (School of Mechanical Engineering, Sungkyunkwan University)
  • Published : 2002.02.01

Abstract

The reliable stress intensity factor analysis is required for fracture mechanics design or safety evaluation of mechanical joints at which cracks often initiate and grow. It has been reported that cracks in mechanical joints usually nucleate as corner cracks at the faying surface of joints and grow as elliptical arc through cracks. In this paper, three dimensional finite element analyses are performed for elliptical arc through cracks in mechanical joints. Thereafter stress intensity factors along elliptical crack front including two surface points are determined by the virtual crack closure technique. Virtual crack closure technique is a method to calculate stress intensity factor using the finite element analysis and can be applied to non-orthogonal mesh. As a result, the effects of clearance on the stress intensity factor are investigated and crack shape are then predicted.

Keywords

References

  1. Cartwright, D.J. and Parker, A.P.,1982, 'Opening Mode Stress Intensity Factor for Cracks in Pin-loads Joints,' International Journal of Fracture, Vol. 18, No. 1, pp. 65-78 https://doi.org/10.1007/BF00034829
  2. Fawaz, S.A., 1998, 'Application of the Virtual Crack Closure Technique to Calculate Stress Instensity Factors for Through Cracks with an Elliptical Crack Front,' Engineering Fracture Mechanics, Vol. 59, No. 3, pp. 327-342 https://doi.org/10.1016/S0013-7944(97)00126-4
  3. Fawaz, S.A., 1999, 'Stress Intensity Factor Solutions for Part-elliptical Through Cracks,' Engineering Fracture Mechanics, Vol. 63, pp. 209-226 https://doi.org/10.1016/S0013-7944(99)00003-X
  4. Heo, S.P. and Yang, W.H., 2001, 'Mixed Mode Stress Intensity Factors and Critical Angles of Cracks in Bolted Joints by Weight Function Method,' Archive of Applied Mechanics, accepted for publication https://doi.org/10.1007/s00419-002-0203-3
  5. Ju, S.H., 1997, 'Stress Intensity Factors for Cracks in Bolted Joints', International Journal of Fracture, Vol. 84, pp. 129-141 https://doi.org/10.1023/A:1007357015800
  6. Lin, X.B. and Smith, R.A., 1999, 'Stress Intensity Factors for Corner Cracks Emanating from Fastener Holes under Tension,' Engineering Fracture Mechanics, Vol. 62, pp. 535-553 https://doi.org/10.1016/S0013-7944(99)00007-7
  7. Narayana, K.B., Dayananda, T.S., Dattaguru, B., Ramamurthy, T.S. and Vijayakumar, K., 1994, 'Cracks Emanating from Pin-Loaded Lugs,' Cracks Emanating from Pin-Loaded Lugs, Vol. 47, No. 1, pp. 29-38 https://doi.org/10.1016/0013-7944(94)90235-6
  8. Raju, I.S., 1987, 'Calculation of Strain-energy Release Rates with Higher Order and Singular Finite Element,' Engineering Fracture Mechanics, Vol. 28, No. 3, pp. 251-274 https://doi.org/10.1016/0013-7944(87)90220-7
  9. Raju, I.S. and Newman Jr.,J.C., 'Stress Intensity Factors for a Wide Range of Semielliptical Surface Cracks in Finite-thickness Plates,' Engineering Fracture Mechanics, Vol. 11, pp. 817-829 https://doi.org/10.1016/0013-7944(79)90139-5
  10. Raju, I.S., Sistla, R. and Krishnamurthy, T., 1976, 'Fracture Mechanics Analysis for Skinstiffener Debonding,' Engineering fracture Mechanics, Vol. 54, No. 3, pp. 371-385 https://doi.org/10.1016/0013-7944(95)00184-0
  11. Shivakumar, K,N. and Newman Jr.,J.C., 1991, 'Stress Intensity Factors for Large Aspect Ratio Surface and Corner Cracks at a Semi-circular Notch in a Tension Specimen,' Engineering Fracture Mechanics, Vol. 38, No. 6, pp. 467-473 https://doi.org/10.1016/0013-7944(91)90096-J
  12. Shivakumar, K.N., Tan, P.W. and Newman Jr.,J.C., 1988, 'A Virtual Crack Closure Technique for Calculating Stress Intensity Factors for Cracked Three Dimensional Bodies,' International Journal of Fracture, Vol. 36, pp. R43-R50 https://doi.org/10.1007/BF00035103