DOI QR코드

DOI QR Code

Effect of Surface Energy Anisotropy on the Equilibrium Shape of Sapphire Crystal

  • Choi, Jung-Hae (Center for Microstructure Science of Materials and School of Materials Science and Engineering College of Engineering, Seoul National University)
  • Published : 2002.01.01

Abstract

Using the two-dimensional Wulff plot, the equilibrium shape of a sapphire crystal was investigated as a function of surface energy anisotropy. Depending on the relative values of surface energy for various facet planes, the projected shape of equilibrium sapphire was determined to be rectangle, parallelogram, hexagon or octagon. The results are compared with the experimentally observed shapes of internal cavities of submicron range in sapphire single crystals.

Keywords

References

  1. G. Wulff, 'Zur Frage der Geschwindigkeit des wachstumas und der Aufl sung der Krystallflachen,' Z. Kristallogr., 34 449-530 (1901)
  2. C. Herring, 'Some Theorems on the Free Energies of Crystal Surfaces,' Phys. Rev., 82 [1] 87-93 (1951) https://doi.org/10.1103/PhysRev.82.87
  3. J. W. Gibbs, 'On the Equilibrium of Heterogeneous Sub strates,' in The Scientific Papers of J. W. Gibbs, Vol. I, Thermodynamics, pp. 54-353 (322), Dover Publications Inc., New York, 1961
  4. J.H. Choi, D.Y. Kim, B. J. Hockey, S. M. Wiederhorn, C. A. Handwerker, J. E. Blendell, W. C. Carter and A. R. Roosen, 'Equilibrium Shape of Internal Cavities in Sapphire,' J. Am. Ceram. Soc., 80 [1] 62-8 (1997) https://doi.org/10.1111/j.1151-2916.1997.tb02791.x
  5. M. L. Kronberg, 'Plastic Deformation of Single Crystals of Sapphire : Basal Slip and Twinning,' Acta. Metall., 5 [9] 507-24 (1957) https://doi.org/10.1016/0001-6160(57)90090-1
  6. M. Kitayama, J. D. Powers, L. Kulinaky and A. M. Glaeser, 'Surface and Interface Properties of Alumina via Model Studies of Microdesigned Interfaces,' J. Euro. Ceram. Soc., 19 [13-14] 2191-209 (1999) https://doi.org/10.1016/S0955-2219(99)00102-8
  7. I. Manasaidis and M. J. Gillan, 'Structure and Energetics of Alumina Structures Calculated from First Principles,' J. Am. Ceram. Soc., 77 [2] 335-38 (1994) https://doi.org/10.1111/j.1151-2916.1994.tb07000.x
  8. M. Kitayama and A. M. Glaeser, 'The Wulff Shape of Alumina; III, Undoped Alumina,' J. Am. Ceram. Soc., 85 [3] 611-22 (2002) https://doi.org/10.1111/j.1151-2916.2002.tb00140.x
  9. J. R. HeffelSnger and C. B. Carter, 'Mechanisms of Surface Faceting and Coarsening,' Surf. Sci., 389 188-200 (1997) https://doi.org/10.1016/S0039-6028(97)00411-1
  10. D.Y. Kim, S. M. Wiederhom, B. J. Hockey, C. A. Hand werker and J. E. Blendell, 'Stability and Surface Energies of Wetted Grain Boundaries in Aluminum Oxide,' J. Am. Ceram. Soc., 77 [2] 444-53 (1994) https://doi.org/10.1111/j.1151-2916.1994.tb07013.x
  11. C. A. Powell Dogan and A. H. Heuer, 'Microstructure of 96% Alumina Ceramics : I, Characterization of the As Sintered Materials,' J. Am. Ceram. Soc., 73 [12] 3670-76(1990) https://doi.org/10.1111/j.1151-2916.1990.tb04274.x
  12. Y. K. Simpson and C. B. Carter, 'Faceting Behavior of Alumina in the Presence of a Glass,' J. Am. Ceram. Soc., 73 [8] 2391-98 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb07603.x
  13. H. Song and R. L. Coble, 'Morphology of Platelike Abnormal Grains in Liquid phase sintering Alumina,' J. Am. Ceram. Soc., 73 [7] 2086-90 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb05272.x
  14. Y. Finkelstein, S. M. Wiederhorn, B. J. Hockey, C. A. Handwerker and J. E. Blendell, 'Migration of Sapphire Interfaces into Vitreous Bonded Alumina Oxide,' pp. 258- 79 in Ceramic Transactions, Vol. 7, Sintering of Advanced Ceramics. Edited by C. A. Handwerker, J. E. Blendell and W. A. Kaysser, Am. Ceram. Soc., Westerville, OH. 1990
  15. W. A. Kaysser, M. Sprissler, C. A. Handwerker and J. E. Blendell, 'Effect of a Liquid Phase on the Morphology of Grain Growth in Alumina,' J. Am. Ceram. Soc., 70 [5] 339-43 (1987) https://doi.org/10.1111/j.1151-2916.1987.tb05005.x
  16. S. C. Hansen and D. S. Phillips, 'Grain-boundary Micro structures in a Liquid phase Sintered Alumina ($\alpha-Al_2O_3$),' Philos. Mag. A, 47 209-34 (1983) https://doi.org/10.1080/01418618308245219
  17. D. S. Phillips and Y, R. Shiue, 'Grain Boundary Micro structures in Alumina Ceramics,' pp. 357-67 in Advances in Ceramics, Vol. 10, Structures and Properties ofMgO and $Al_2O_3$ Ceramics. Ed. by W. D. Kingery, Am. Ceram., Soc., Columbus, OH, 1984 https://doi.org/10.1111/j.1151-2916.1927.tb18732.x
  18. S. C. Hansen and D. S. Phillips, 'Grain boundary Micro structures in a Commercial Alumina Ceramic,' pp. 163-70 in Advances in Ceramics, Vol. 6, Character of Grain Boundaries, Ed. by M. F. Yan and A. H. Heuer, The Am. Ceram Soc., Columbus, OH. 1983
  19. K. J. Morrissey and C. B. Carter, 'Dislocations in Twin Boundaries in $Al_2O_3$,' pp. 85-95 in Advances in Ceramics, Vol. 6, Character of Grain Boundaries, Ed. by M. F. Yan and A. H. Heuer, The Am. Ceram. Soc.. Columbus, OH. 1983