DOI QR코드

DOI QR Code

Characterization of optical waveguides with near - field scanning optical microscope

근접장 주사 광학현미경을 이용한 광 도파로 특성 연구

  • Ji, Won-Soo (School of Information and Communication Engineering, Inha University) ;
  • Kim, Dae-Chan (School of Information and Communication Engineering, Inha University) ;
  • Lee, Seung-Gol (School of Information and Communication Engineering, Inha University) ;
  • O, Beom-Hoan (School of Information and Communication Engineering, Inha University) ;
  • Lee, El-Hang (School of Information and Communication Engineering, Inha University)
  • 지원수 (인하대학교 정보통신공학부, 마이크로 포토닉스 연구 센터) ;
  • 김대찬 (인하대학교 정보통신공학부, 마이크로 포토닉스 연구 센터) ;
  • 이승걸 (인하대학교 정보통신공학부, 마이크로 포토닉스 연구 센터) ;
  • 오범환 (인하대학교 정보통신공학부, 마이크로 포토닉스 연구 센터) ;
  • 이일항 (인하대학교 정보통신공학부, 마이크로 포토닉스 연구 센터)
  • Published : 2002.08.01

Abstract

The propagation characteristic of an optical waveguide was investigated by measuring with a near-field scanning optical microscope (NSOM) the evanescent field formed at the neighbor of its core-cladding interface. For this purpose, the NSOM system was developed specially as a form of Photon scanning tunneling microscope. The evanescent field distributions of several channel waveguides were measured at the wavelength of 1550 ㎚, and the usefulness of the system was verified by comparing experimental results with simulation results. In particular, the interference phenomena of the guided modes during their propagation along a multimode channel waveguide could be observed directly from the measured evanescent field distribution.

광 도파로를 따라 전파하는 빛의 특성을 측정하기 위해 근접장 주사 광학현미경(Near-field scanning optical microscope, NSOM)으로 광 도파로의 표면에 형성된 에바네슨트 파 evanescent wave)의 분포를 측정하였다. 사용된 NSOM은 photon scanning tunneling microscope방식으로 본 연구의 목적에 적합하도록 직접 제작한 것이다. 광원 파장 1550㎚에서 단일 모드 다중 모드 채널형 광 도파로에 대해 도파로 표면에 형성된 에바네슨트 파의 분포를 측정하였으며, 3차원 빔전파방법(Beam Propagation Method)으로 계산된 수치 해석 결과와 두 모드 간의 간섭 형상을 직접적으로 확인할 수 있었다.

Keywords

References

  1. H. E. Jackson, S. M. Linsay, C.D. Poweleit, D. H. Naghski, G. N. De Brabander, and J. T. Boyd “Near field measurements of optical channel waveguide structures,” Ultramicroscopy, 61, pp. 295-298, 1995. https://doi.org/10.1016/0304-3991(95)00134-4
  2. S. Bourzeix, “Near-field optical imaging of light propagation in semiconductor waveguide structure,” Appl. Phys. Lett., vol. 73, no. 8, pp. 1035-1037, 1998. https://doi.org/10.1063/1.122076
  3. C. D Poweleit, “Near-field scanning optical microscopy measurements of optical intensity distributions in semiconductor channel waveguides,” Appl. Phys. Lett., vol. 69, no. 23, pp. 3471-3473, 1996. https://doi.org/10.1063/1.117255
  4. X. Borrise, D. Jimenez, N. Barniol, F. Perez-Murano, and X. Aymerich, “Scanning near-field optical microscope for the characterization of optical integrated waveguides,” Journal of Lightwave Technology, vol. 18, no. 3, pp. 370-374, 2000. https://doi.org/10.1109/50.827509
  5. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier-optical microscopy on a nanometeric scale,” Science 251, pp. 1468-1470, 1991. https://doi.org/10.1126/science.251.5000.1468
  6. E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, pp. 1422-1425, 1993. https://doi.org/10.1126/science.262.5138.1422
  7. M. A. Paesler, and P. J. Moyer, “Near-field optics: theory, instrumentation, and applications,” New York, Wieley-Interscience, 1995.
  8. B. B. Goldberg, M. S. Unlu, W. D. Herzog, H. F. Ghaemi, and E. Towe, “Near-field optical studies of semiconductor heterostructures and laser diodes,” Selected Topics in Quantum Electronics, IEEE Journal on, vol. 1, no. 4, pp. 1073-1081, 1995. https://doi.org/10.1109/2944.488684
  9. G. Beister, F. Bugge, G. Erbert, J. Maege, P. Ressel, J. Sebastian, A. Thies, and H. Wenzel, “Monomode emission at 350 mW and high reliability with InGaAs/AlGaAs (/spl lambda/=1020 nm) ridge waveguide laser diodes,” Electronics Letters, vol. 34, no. 8, pp. 778-779, 1998. https://doi.org/10.1049/el:19980581
  10. W. D. Herzog, B. B. Goldberg, and M. S. Unlu, “Beam steering in narrow-stripe high-power 980-nm laser diodes,” IEEE Photonics Technology Letters, vol. 12, no. 12, pp. 1604-1606, 2000. https://doi.org/10.1049/el:19980581
  11. Khaled Karrai, and Robert D. Grober, “Piezoelectric tipsample distance control for near field optical microscopes,” Appl. Phys. vol. 66, no. 14, pp. 1842-1844, 1995.
  12. Y. T. Yang, D. Heh, P. K. Wei, and W. S. Fann, “Vibration dynamics of tapered optical fiber probes,” J. Appl. Phys. vol. 81, no. 4, pp. 1623-1627, 1997. https://doi.org/10.1063/1.364016
  13. Konstantin B. Shelimov, Dmitri N. Davydov, and Martin Moskovits, “Dynamics of a piezoelectric tuning fork/optical fiber assembly in a near-field scanning optical microscope,” Review of Scientific Instruments, vol. 71, no. 2, pp. 437-443, 2000. https://doi.org/10.1063/1.1150220
  14. S. Xu, X. Wu, W. Guo, and Z. Li. “Scattering characteristics of rectangular coaxial line discontinuities,” IEE Proc-Microw. Antennas Propag., vol. 142, no. 3, pp. 257-264, 1995. https://doi.org/10.1049/ip-map:19951898