DOI QR코드

DOI QR Code

Numerical Simulation of Turbulent Flow in n Wavy-Walled Channel

파형벽면이 있는 채널 내의 난류유동에 대한 수치해석

  • 박태선 (한국항공우주연구원, 로켓엔진그룹) ;
  • 성형진 (한국과학기술원, 기계공학과)
  • Published : 2003.05.01

Abstract

Turbulent flow over a fully-developed wavy channel is investigated by the nonlinear $k-\varepsilon-f_\mu$ model of Park et al.(1) The Reynolds number is fixed at $Re_{b}$ = 6760 through all wave amplitudes and the wave configuration is varied in the range of $0\leq\alpha/\lambda\leq0.15$ and $0.25\leq{\lambda}/H\leq4.0$. The predicted results for wavy channel are validated by comparing with the DNS data of Maa$\beta$ and Schumann(2) The model performance Is shown to be generally satisfactory. As the wave amplitude increases, it is found that the form drag grows linearly and the friction drag is overwhelmed by the form drag. In order to verify these characteristics, a large eddy simulation is performed for four cases. The dynamic model of Germane et al.(3) is adopted. Finally, the effects of wavy amplitude on separated shear layer are scrutinized.

Keywords

References

  1. Park, T.S., Sung, H.J. and Suzuki, K., 2003, 'Development of a Nonlinear Near-Wall Turbulence Model for Turbulent Flow and Heat Transfer,' Int. J. Heat Fluid Flow, Vol. 24, pp. 29-40 https://doi.org/10.1016/S0142-727X(02)00211-4
  2. Maab, U. and Schumann, U., 1996, 'Direct Numerical Simulation of Separated Turbulent Flow over a Wavy Boundary,'' Notes on Numerical Fluid Mechanics, Vol. 52, pp. 227-241
  3. Germano, M., Piomelli, U., Moin, P.and Cabot, W., 1991, 'A Dynamic Subgrid-scale Eddy Viscosity Model,' Phys. Fluids A, Vol. 3(7), pp. 1760-1765 https://doi.org/10.1063/1.857955
  4. Buckles, J., Hanratty, T,J. and Adrian, R.J., 1984, 'Turbulent Flow over a Large-Amplitude Wavy Surface,' J. Fluid Mech., Vol. 140, pp. 27-44 https://doi.org/10.1017/S0022112084000495
  5. Hudson, J.D., Dykhno, L. and Hanratty, T.J., 1996, 'Turbulence Production in Flow over a Wavy Wall,' Exp. Fluids, Vol. 20, pp. 257-265 https://doi.org/10.1007/BF00192670
  6. McLean, J.W., 1983, 'Computation of Turbulent Flow over a Moving Wavy Boundary,' Phys. Fluids, Vol. 26, pp.2065 https://doi.org/10.1063/1.864410
  7. Patel, V.V., Tyndall Chon, J. and Yoon, J.Y., 1991, 'Turbulent Flow in a Channel with a Wavy Wall,' ASME J. Fluid Engineering, Vol. 113, pp. 579-586 https://doi.org/10.1115/1.2926518
  8. Pope, S.B., 1975, 'A More General Effective-Viscosity Hypothesis,' J. Fluid Mech., Vol. 72, pp. 331-340 https://doi.org/10.1017/S0022112075003382
  9. You, J., Choi, H. and Yoo, J.Y., 2000, 'A Modified Fractional Step Method of Keeping a Constant Mass Flow Rate in Fully Developed Channel and Pipe Flows,' KSME Int. J. Vol. 14, pp. 547-552
  10. Park, T.S. and Sung, H.J., 1997, 'A New Low-Reynolds-Number ${\kappa}-{\varepsilon}-f_{\mu}$ Model for Predictions Involving Multiple Surfaces,' Fluid Dynamics Research, Vol. 20, pp. 97-113 https://doi.org/10.1016/S0169-5983(96)00047-0
  11. Smagorinsky J., '1963, 'General Circulation Experiments with the Primitive Equations,'' Mon Weather Rev, Vol. 91-3, pp. 99-164 https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  12. Lilly, D.K., '1992, 'A Proposed Modification of the Germano Subgrid-scale Closure Method,'' Phys. Fluids A, Vol. 4-3, pp. 633-635
  13. Lele, S.K., 1992, 'Compact Finite Difference Schemes with Spectral-like Resolution,' J. Computation Phys., Vol. 103, pp. 16-42 https://doi.org/10.1016/0021-9991(92)90324-R
  14. Zhu, J., 1992, 'Higher-Order Bounded Discretization Schemes for Finite Volume Computations of Incompressible Flows,' Comput. Meth. Appl. Mech. Eng., Vol. 98, pp. 345-360 https://doi.org/10.1016/0045-7825(92)90003-3
  15. Park, T.S., 1999, 'Multigrid Method and Low-Reynolds-Number ${\kappa}-{\varepsilon}$ Model for Turbulent Recirculation Flows,' Numerical Heat Transfer, Part B: Fundamentals, Vol. 36, pp. 433-456 https://doi.org/10.1080/104077999275613
  16. Craft, T.J., Launder, B.E. and Suga, K., 1996, 'Development and Application of a Cubic Eddy-Viscosity Model of Turbulence,' Int. J. Heat and Fluid Flow, Vol. 17, pp. 108-115 https://doi.org/10.1016/0142-727X(95)00079-6
  17. Tavoularis, S., and Corrsin, S., 1981, 'Experiments in Nearly Homogeneous Turbulent Shear Flow with a Uniform Mean Temperature Gradient. Part I,' J. Fluid Mech. Vol. 104, pp. 311-347 https://doi.org/10.1017/S0022112081002930
  18. Lee, M. J., Kim, J. and Moin, P., 1990, 'Structure of Turbulence at High Shear Rate,' J. Fluid Mech., Vol. 216, pp. 561-583 https://doi.org/10.1017/S0022112090000532
  19. Moser, R.D., Kim, J. and Mansour, N.N., 1999, 'Direct Numerical Simulation of Turbulent Channel Flow up to $Re_{\tau}=590$,' Phys. Fluids, Vol. 11, pp. 943-945 https://doi.org/10.1063/1.869966
  20. Henn, D.S. and Sykes, R.I., 1999, 'Large-Eddy Simulation of Flow over Wavy Surface. J. Fluid Mech., Vol. 383, pp. 75-112 https://doi.org/10.1017/S0022112098003723
  21. Jeong, J. and Hussain, F., 1995, 'On the Identification of a Vortex', J. Fluid. Mech., Vol. 285, pp. 69-94 https://doi.org/10.1017/S0022112095000462