Development of ultrafine grained silicon carbide by spark plasma sintering

스파크 플라즈마 소결에 의한 초미세 결정립 탄화규소의 개발

  • 조경식 (금오공과대학교 재료공학전공) ;
  • 이광순 (금오공과대학교 재료공학전공) ;
  • 백성호 (금오공과대학교 재료공학전공) ;
  • 이상진 (목포대학교 신소재공학과)
  • Published : 2003.08.01

Abstract

Rapid densification of a SiC powder with additive 0.5 wt% $B_4$C was conducted by spark plasma sintering (SPS). The unique features of the process are the possibilities of using very fast heating rate and short holding time to obtain fully dense materials. The heating rate and applied pressure were kept to be $100^{\circ}C$/min and 40 MPa, while sintering temperature and soaking time varied to 1800, 1850, 1900 and $1950^{\circ}C$ and 10, 20 and 30 min, respectively. All of the SPS-sintered specimens at $1950^{\circ}C$ reached near-theoretical density. The XRD found that 3C-to-6H transformation at $1850^{\circ}C$. The microstructures of the rapidly densified SiC ceramics consisted of duplex microstructure with ultrafine equiaxed grains under 2 $\mu\textrm{m}$ and elongated grains of 0.5∼2 $\mu\textrm{m}$ wide, length 3∼10 $\mu\textrm{m}$. The biaxial strength increased with the increase of sintering time. Strength of 392.7 MPa was obtained with the fully densified specimen sintered at $1950^{\circ}C$ for 30 min, in agreement with the general tendency that strength increases with decreases pore. On the other hand, the fracture toughness shows the value of 2.17∼2.34 MPa$.$$m^{1/2}$ which might be due to the transgranular fracture mode.

0.5wt% $B_4$C를 첨가한 SiC분말로부터 스파크 플라즈마 소결(SPS)로 급속 치밀화 하였다. 이 공정의 독특한 특징은 매우 빠른 승온 속도와 짧은 시간에 완전 치밀한 시편을 얻을 수 있는 가능성이다. 승온 속도와 가압력은 $100^{\circ}C$/min 과 40MPa으로 유지시켰는데, 소결 온도와 유지 시간은 각각 1800, 1850, 1900과 $1950^{\circ}C$ 그리고 10, 20과 30min으로 하였다. $1950^{\circ}C$에서 SPS 소결한 시편은 거의 이론밀도에 이르렀다. $1850^{\circ}C$에서 3C로부터 6H로 상전이 되는 것이 XRD에서 나타났다. 급속 소결한 SiC 세라믹스는 2$\mu\textrm{m}$ 이하 크기의 초미세 등축 입자와 폭 0.5∼2$\mu\textrm{m}$, 길이 3∼10$\mu\textrm{m}$의 길게 자란 입자의 이중 미세구조로 구성되었다. 이축강도는 소결 유지 시간이 증가할수록 증가하였다. $1950^{\circ}C$에서 30min 유지하면 392.7 MPa의 강도에 도달하였는데. 기공이 줄어들면 강도가 상승하는 일반적인 경향과 일치한다. 한편, 소결 유지시간이 증가할수록 파괴 인성은 증가하고 있지만. 2.17∼2.34MPa$.$$m^{1/2}$의 낮은 값을 유지하고 있는데, 파단면이 거의 입내 파괴 모드에 기인하는 것으로 생각된다.

Keywords

References

  1. Ceramics for high performance applications S.Prochazka;J.J.Burke(ed);A.E.Gorum(ed);R.M.Katz(ed)
  2. J. Am. Ceram. Soc. v.61 β-α Transformation in polycrystalline SiC: Ⅱ, interfacial energetics T.E.Mitchell;L.U.Ogbuji;A.H.Heuer https://doi.org/10.1111/j.1151-2916.1978.tb09349.x
  3. J. Am. Ceram. Soc. v.59 Sintering of covalent solids C.Greskovich;J.Rosolowski https://doi.org/10.1111/j.1151-2916.1976.tb10979.x
  4. J. Am. Ceram. Soc. v.58 Hot-pressing of silicon carbide with boron carbide addition J.M.Bind;J.V.Biggers https://doi.org/10.1111/j.1151-2916.1975.tb11482.x
  5. Fracture Mechanics of Ceramics Vol. 2 Strength and microstructure of dense, hot-pressesd silicon carbide S.Prochazka;R.J.Charles;R.C.Bradt(ed.);D.P.H.Hasselman;F.F.Lange(ed.)
  6. Presented at the International Symposium on Factors in Densification and Sintering of Oxide and Nonoxide Ceramics Densification of silicon carbide by the addition of BN, BPand B₄C, and correlation to their solid solubilities Y.Murata;R.H.Smoak
  7. Wear v.180 Effect of microstructure and erosive wear behavior of SiC ceramics D.F.Wang;J.H.She;Z.Y.Ma https://doi.org/10.1016/0043-1648(94)06535-7
  8. Acta Mater v.48 Role of the grain-boundary phase on the elevated-temperature strength, toughness, fatigue and creep resistance of silicon carbide sintered with A1, B, and C D.Chen;M.E.Sixta;X.F;Zhang,L.C https://doi.org/10.1016/S1359-6454(00)00246-9
  9. J. Am. Ceram. Soc. v.83 Role of carbon in the sintering of borondoped silicon carbide W.J.Clegg https://doi.org/10.1111/j.1151-2916.2000.tb01327.x
  10. J. Am. Ceram. Soc. v.79 Wear and wear transition in silicon carbide ceramics during sliding S.J.Cho;C.D.Um https://doi.org/10.1111/j.1151-2916.1996.tb08579.x
  11. J. Ceram. Soc. Jpn. v.99 Microstructure development and stacking fault annihilation in β-SiC powder compact W.S.Seo;C.H.Pai;K.Koumoto;H.Yanagida https://doi.org/10.2109/jcersj.99.443
  12. Ceram. Soc. of Jpn, annual Meeting Bulletin v.519 Polytypes in SiC ceramics with BeO addition A.Soeta;K.Maeda;Y.Suzuki
  13. Acta Mater v.49 Damage evolution in dynamic deformation of silicon carbide C.J.Shin;M.A.Meyers;V.F.Nesterenko;S.J.Chen
  14. J. Am. Ceram. Soc. v.79 Polytypes, grain growth, and fracture toughness of metal boride particulate SiC composites H.Tanaka;N.Iyi
  15. Brit. Ceram. R. A. Stoke-on-Trent v.27 Fracture phenomena of sintered alpha-SiC W.Grellner;K.A.Schwartz;A.Lipp
  16. Nature v.217 Sintering in gas dischargs C.E.G.Bennet;N.A.Mckinnon;L.S.Williams https://doi.org/10.1038/2171287a0
  17. Am. Ceram. Soc. Bull. v.67 An innovative technique for plasma processing of ceramics and composite materials K.Upadhya
  18. Ceram. Int. v.17 Microwave and plasma sintering of ceramics D.L.Johnson https://doi.org/10.1016/0272-8842(91)90025-U
  19. J. Mater. Res. v.7 Plasma activated sintering of additive-free AIN powders to neartheoretical density in 5 minutes J.R.Groza;S.H.Risbud;K.Yamazaki https://doi.org/10.1557/JMR.1992.2643
  20. Philos. Mag. B v.69 Clean grain boundaries in aluminium nitride ceramics densified without additives by a plasma-activatied sintering process S.H.Risbud;J.R.Groza;M.J.Kim https://doi.org/10.1080/01418639408240126
  21. J. Mater.Res v.10 Retention of nanostructure in aluminum oxide by very rapid sintering at 1150°C S.H.Risbud;C.H.Sha;A.K.Mukherjee;M.J.Kim;J.S.Bow;R.A.Holl https://doi.org/10.1557/JMR.1995.0237
  22. J. Ceram. Soc. Jpn v.103 Effect of speak plasma sintering on densification and mechanical properties of silicon carbide N.Tamari;T.Tanaka;K,Tanaka;I.Kondoh;M.Kawahara;M.Tokita https://doi.org/10.2109/jcersj.103.740
  23. J. Mater.Sci Left v.14 Fabrication of silicon nitride nanoceramics by spark plasma sintering T.Nishimura;M.Mitomo;H.Hitotsuru;M.Kawakara https://doi.org/10.1007/BF00258160
  24. J. Am. Ceram. Soc. v.85 Spark plasma sintering of alumina Z.Shen;M.Johnson;Z.Zhao;M.Nygren https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  25. J. Kor. Ceram. Soc v.38 The effeci of La-silicon oxynitride on the densification of Si₃N₄ceramics by spark plasma sintering K.S.Cho;S.Kim.S.H.Beak;H.J.Choi;J.H.Lee
  26. Bull. Ceram. Soc. Jpn. v.32 What we can do by pulse electric current sintering N.Murayama
  27. J. Mater. Sci. Leff. v.17 Rapid rate sintering of nano-grained ZrO₂-based composites using pulse electric current sintering method M.Yishimura;T.Ohji;M.Sando;Y.Nihara https://doi.org/10.1023/A:1026476430465
  28. J. Soc. Powder Technol., Jpn. v.30 Trends in advanced SPS spark plasma sintering system and technology M.Tokita https://doi.org/10.4164/sptj.30.11_790
  29. Internaional Symposium of Spark Plasma Sintering 2001, Orchard Hotel, Singapore. no.september Influence of carbon content on densification and mechanical properties of SiC with B₄C and carbon S.H.Beak;K.S.Cho;S.Kim;K.H.Lee