원형단면의 깊은 비선형 테이퍼 봉과 보의 3차원 진동해석

Three-Dimensional Vibration Analysis of Deep, Nonlinearly Tapered Rods and Beams with Circular Cross-Section

  • 심현주 (중앙대학교 대학원 건축학과) ;
  • 강재훈 (중앙대학교 공과대학 건축학부)
  • 발행 : 2003.09.01

초록

원형단면의 깊은 테이퍼봉과 보의 진동수와 모드형상을 결정하는 3차원 해석방법이 제시되었다. 수학적으로 1차원인 전통적인 봉과 보이론과는 달리, 본 연구에서는 3차원 동탄성방정식을 근간으로 하였다. 반경방향(r), 원주방향(θ), 축방향(z)으로의 변위성분인 u/sup r/, u/sub θ/, u/sub z/를 시간에 대해서는 정현적으로, θ에 대해서는 주기적으로, r과 z방향으로는 다수다항식의 형태로 표현하였다. 봉과 보의 위치(변형률)에너지와 운동에너지를 정식화하고, 고유치문제를 해결하기 위해 Ritz법을 사용하였으며, 진동수의 최소화과정을 통해 엄밀해의 상위경계치의 진동수를 구하였다. 이때 다항식의 차수를 증가시키면 진동수는 엄밀해에 수렴하게 된다. 봉과 보의 하위 5개의 진동수에 대해서 유효숫자 4자리까지의 수렴성 연구가 이루어졌다. 축방향으로 1차 직선적, 2차 및 3차 곡선으로 테이퍼된 9가지 형상의 봉과 보의 수치결과를 3차원 이론을 이용하여 최초로 계산하였다. 또한 선형 테이퍼 보의 예를 통해 3차원 Ritz법과 고전적인 1차원 Euler-Bernoulli 보이론과의 비교가 이루어졌다.

A three dimensional (3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of deep, tapered rods and beams with circular cross section. Unlike conventional rod and beam theories, which are mathematically one-dimensional (1-D), the present method is based upon the 3-D dynamic equations of elasticity. Displacement components u/sup r/, u/sub θ/ and u/sub z/, in the radial, circumferential, and axial directions, respectively, are taken to be sinusoidal in time, periodic in , and algebraic polynomials in the r and z directions. Potential (strain) and kinetic energies of the rods and beams are formulated, the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated for the first five frequencies of the rods and beams. Novel numerical results are tabulated for nine different tapered rods and beams with linear, quadratic, and cubic variations of radial thickness in the axial direction using the 3D theory. Comparisons are also made with results for linearly tapered beams from 1-D classical Euler-Bernoulli beam theory.

키워드

참고문헌

  1. Pochhammer, L., '$\ddot{U}$ber die Fortpflanzungsgeschwingdigkeiten kleiner Schwingungen in einem unbegrenzten isotropen Kreiszylinder', J. Reine Angew. Math., Vol.81, 1876, pp.324-326
  2. Chree, C., 'Longitudinal waves of a solid bar', Quart. J. Math., Vol.21, 1886, p.287
  3. Chree, C., 'The equations of an isotropic elastic solid in polar and cylindrical coordinates, their solutions and application', Trans. Cambridge Philos. Soc. Math. Phys. Sci., Vol.14, 1889, pp. 250-269
  4. Pickett, G., 'Flexural vibration of unrestrained cylinders and disks', J. Appl. Phys., Vol.16, 1935, pp.820-831 https://doi.org/10.1063/1.1707546
  5. McNiven, H.D., and Perry, D.C., 'Axially symmetric waves in finite, elastic rods', J. Acoust. Soc. Amer., Vol.34, 1962, pp.433-437 https://doi.org/10.1121/1.1918145
  6. McMahon, G. W., 'Experimental study of the vibrations of solid, isotropic, elastic cylinders', J. Acoust. Soc. Amer., Vol.36, 1964, pp.85-92 https://doi.org/10.1121/1.1918918
  7. McMahon, G. W., 'Finite difference analysis of the vibrations of solid cylinders', J. Acoust. Soc. Amer., Vol.48, 1970, pp.307-312 https://doi.org/10.1121/1.1912129
  8. Tefft, W. E., 'Numerical solution of the frequency equations for the flexural vibrations of cylindrical rods', J. Res., (NBS) 64B, 1969, pp. 237-242
  9. Rumerman, M., and Raynor, S., 'Natural frequencies of finite circular cylinders in axially symmetric longitudinal vibration', J. Sound Vib., Vol.15, 1971, pp.529-543 https://doi.org/10.1016/0022-460X(71)90409-3
  10. Gladwell, G. M. L., and Tahbildar, U. C., 'Finite element analysis of the axisymmetric vibrations of cylinders', J. Sound Vib., Vol.22, 1972, pp.143-157 https://doi.org/10.1016/0022-460X(72)90531-7
  11. Hutchinson, J. R., 'Axisymmetric vibrations of a free finite length rod', J. Acoust. Soc. Amer., Vol.51, 1972, pp.233-240 https://doi.org/10.1121/1.1912835
  12. Hutchinson, J. R., 'Vibrations of solid cylinders', ASME J. Appl. Mech., Vol.47, 1980, pp. 901-907 https://doi.org/10.1121/1.1912835
  13. Hutchinson, J. R, 'Transverse vibrations of beams, exact versus approximate solutions', ASME J. Appl. Mech., Vol.48, 1981, pp.923-928 https://doi.org/10.1115/1.3153811
  14. Gladwell, G. M. L., and Vijay, D. K., 'Natural frequencies of free finite length circular cylinders', J. Sound Vib. Vol.42, 1975, pp.387-397 https://doi.org/10.1016/0022-460X(75)90252-7
  15. Leissa, A. W., and So, J., 'Comparisons of vibration frequencies for rods and beams from one-dimensional and three-dimensional analyses', J. Acoust. Soc. Am., Vol.98, No.4, 1995, pp.2122-2135 https://doi.org/10.1121/1.414331
  16. Leissa, A. W., and So, J., 'Accurate vibration frequencies of circular cylinders from three- dimensional analysis', J. Acoust. Soc. Am., Vol.98, No.4, 1995, pp.2136-2141 https://doi.org/10.1121/1.414403
  17. Mabie, H. H., and Rogers, C. B., 'Transverse vibrations of tapered cantilever beams with end loads', J. Acoust. Soc. Am., Vol.36, 1964, pp.463-469 https://doi.org/10.1121/1.1918979
  18. Mabie, H. H., and Rogers, C. B., 'Transverse vibrations of tapered cantilever beams with end support', J. Acoust. Soc. Am., Vol.44, 1968, pp.1739-1741 https://doi.org/10.1121/1.1911327
  19. Mabie, H. H., and Rogers, C. B., 'Transverse vibrations of double-tapered cantilever beams', J. Acoust. Soc. Am., Vol.51, 1972, pp.1771-1774 https://doi.org/10.1121/1.1913028
  20. Mabie, H. H., and Rogers, C. B., 'Transverse vibrations of double-tapered cantilever beams with end support and with end mass', J. Acoust. Soc. Am., Vol.55, 1974, pp.986-991 https://doi.org/10.1121/1.1914673
  21. Conway, H. D., and Dubil, J. F., 'Vibration frequencies of truncated cone and wedge beams', ASME J. Appl. Mech., Vol.32, 1965, pp.923-935
  22. Heidebrecht, A. C., 'Vibration of non-uniform simply-supported beams', ASCE J. Engng. Mech., Vol.93, 1967, pp.1-15 https://doi.org/10.1121/1.1913028
  23. Wang, H.-C., 'Generalized gypergeometric function solutions on the transverse vibration of a class of non-uniform beams', ASME J. Appl. Mech., Vol.34, 1967, pp.702-708
  24. Sanger, D. J., 'Transverse vibration of a class of non-uniform beams', Int. J. Mech. Engrg. Sci., Vol.16, 1968, pp.111-120 https://doi.org/10.1121/1.1914673
  25. Klein, L., 'Transverse vibrations of non-uniform beam', J. Sound Vibr., Vol.37, 1974, pp. 491-505 https://doi.org/10.1016/S0022-460X(74)80029-5
  26. Goel, R. P., 'Transverse vibrations of tapered beams', J. Sound Vibr., Vol.47, 1976, pp.1-7 https://doi.org/10.1016/0022-460X(76)90403-X
  27. Downs, B., 'Reference frequencies for the validation of numerical solutions of transverse vibration of non-uniform beams', J. Sound Vibr., Vol.61, 1978, pp.71-78 https://doi.org/10.1016/0022-460X(78)90042-1
  28. To, C. W. S, 'Higher order tapered beam finite elements for vibration analysis', J. Sound Vibr., Vol.63, 1979, pp.33-50 https://doi.org/10.1016/0022-460X(79)90375-4
  29. Sato, K., 'Transverse vibrations of linearly tapered beams with ends restrained elastically against rotation subjected to axial force', Int. J. Mech. Sci., Vol.22, 1980, pp.109-115 https://doi.org/10.1016/0020-7403(80)90047-8
  30. Lau, J. H., 'Vibration frequencies of tapered bars with end mass', ASME J. Appl. Mech., Vol.51, 1984, pp.179-181 https://doi.org/10.1016/0022-460X(76)90403-X
  31. Banerjee, J. R., and Williams, F. W., 'Exact Bernoulli-Euler dynamic stiffness matrix for a range of tapered beams', Int. J. Num. Methods Engrg., Vol.21, 1985, pp.2289-2302 https://doi.org/10.1002/nme.1620211212
  32. Banerjee, J. R., and Williams, F. W., 'Further flexural vibration curves for axially loaded beams with linear or parabolic taper', J. Sound Vibr., Vol.102, 1985, pp.315-327 https://doi.org/10.1016/S0022-460X(85)80145-0
  33. Williams, F. W., and Banerjee, J. R., 'Flexural vibration of axially loaded beams with linear or parabolic taper', J. Sound Vibr., Vol. 99, 1985, pp.121-138 https://doi.org/10.1016/0022-460X(85)90449-3
  34. Kim, C. S., and Dickinson, S. M., 'On the analysis of laterally vibrating slender beams subject to various complicating effects', J. Sound Vibr., Vol.122, 1988, pp.441-455 https://doi.org/10.1016/S0022-460X(88)80093-2
  35. Laura, P. A. A., Valerga de Greco, B., 'Utjes, J. C., and Carnicer, R., Numerical experiments on free and forced vibrations of beams of non-uniform cross-section', J. Sound Vibr., Vol.120, 1988, pp.587-596 https://doi.org/10.1016/S0022-460X(88)80229-3
  36. Lee, S. Y., Ke, H. Y., and Kuo, Y. H., 'Analysis of non-uniform beam vibration', J. Sound Vibr., Vol.142, 1990, pp.15-29 https://doi.org/10.1016/0022-460X(90)90580-S
  37. Yang, K. Y., 'The natural frequencies of a non-uniform beam with a tip mass and with translational and rotational springs', J. Sound Vibr., Vol.137, 1990, pp.339-341 https://doi.org/10.1016/0022-460X(90)90799-6
  38. Alvares, S. I., Ficcadenti de Iglesias, G. M., and Laura, P. A. A., 'Vibrations of an elastically restrained, non-uniform beam with translational and rotational springs, and with a tip mass', J. Sound Vibr., Vol.120, 1991, pp. 465-471 https://doi.org/10.1016/0022-460X(85)90449-3
  39. Grossi, R. O., and Bhat, R. B., 'A note on vibrating tapered beams', J. Sound Vibr., Vol. 147, 1991, pp.174-178 https://doi.org/10.1016/0022-460X(91)90693-E
  40. Lee, S. Y., and Kuo, Y. H., 'Exact solution for the analysis of general elastically restrained non-uniform beams', ASME J. Appl. Mech., Vol.59, 1992, S205-S212 https://doi.org/10.1016/S0022-460X(88)80229-3
  41. Craver Jr., W. L., and Jampala, P., 'Transverse vibrations of a linearly tapered cantilever beam with constraining springs', J. Sound Vibr., Vol.166, 1993, pp.521-529 https://doi.org/10.1006/jsvi.1993.1310
  42. Naguleswaran, S., 'A direct solution of Euler- Bernoulli wedge and cone beams', J. Sound Vibr., Vol.172, 1994, pp.289-304 https://doi.org/10.1006/jsvi.1994.1176
  43. Naguleswaran, S., 'Vibration in the two principal planes of a non-uniform beam of rectangular cross-section, one side of which varies as the square root of the axial co-ordinate', J. Sound Vibr., Vol.172, 1994, pp.305-319 https://doi.org/10.1006/jsvi.1994.1177
  44. Rosa, M. A., and Auciello, N. M., 'Free vibrations of tapered beams with flexible ends', Computers & Structures, Vol.60, No.2, 1996, pp.197-202 https://doi.org/10.1016/0045-7949(95)00397-5
  45. Zhou, D., and Cheung, Y. K., 'The free vibration of a type of tapered beams', Comput. Methods Appl. Mech. Engrg, Vol.188, 2000, pp.203-216 https://doi.org/10.1016/S0045-7825(99)00148-6
  46. Sokolnikoff, I. S., Mathematical theory of elasticity, Second Edition, McGraw-Hill Book Co., New York, 1956 https://doi.org/10.1006/jsvi.1993.1310
  47. Kantorovich, L. V., and Krylov, V. I., Approximate methods in higher analysis. Noordhoff, Gronigen, The Netherlands, 1958, pp.266-268 https://doi.org/10.1006/jsvi.1994.1176
  48. Ritz, W., '$\ddot{U}$ber eine neue Methode zur Lsung gewisser Variationsprobleme der mathematischen Physik', Journal fr die Reine und Angewandte Mathematik, Vol.135, 1909, pp.1-61 https://doi.org/10.1006/jsvi.1994.1177
  49. McGee, O. G. and Leissa, A. W., 'Three-dimensional free vibrations of thick skewed cantilever plates', Journal of Sound and Vibration, Vol.144, 1991, pp.305-322; Errata Vol.149, 1991, pp.539-542