DOI QR코드

DOI QR Code

Growth Behavior and Thermal Stability of CoSi2 Layer on Poly-Si Substrate Using Reactive Chemical Vapor Deposition

반응성 CVD를 이용한 다결정 실리콘 기판에서의 CoSi2 layer의 성장거동과 열적 안정성에 관한 연구

  • Kim, Sun-Il (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Heui-Seung (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, Jong-Ho (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Ahn, Byung-Tae (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • 김선일 (한국과학기술원 재료공학과) ;
  • 이희승 (한국과학기술원 재료공학과) ;
  • 박종호 (한국과학기술원 재료공학과) ;
  • 안병태 (한국과학기술원 재료공학과)
  • Published : 2003.01.01

Abstract

Uniform polycrystalline $CoSi_2$layers have been grown in situ on a polycrystalline Si substrate at temperature near $625^{\circ}C$ by reactive chemical vapor deposition of cyclopentadienyl dicarbonyl cobalt, Co(η$^{5}$ -C$_{5}$ H$_{5}$ )(CO)$_2$. The growth behavior and thermal stability of $CoSi_2$layer grown on polycrystalline Si substrates were investigated. The plate-like CoSi$_2$was initially formed with either (111), (220) or (311) interface on polycrystalline Si substrate. As deposition time was increasing, a uniform epitaxial $CoSi_2$layer was grown from the discrete $CoSi_2$plate, where the orientation of the$ CoSi_2$layer is same as the orientation of polycrystalline Si grain. The interface between $CoSi_2$layer and polycrystalline Si substrate was always (111) coherent. The growth of the uniform $CoSi_2$layer had a parabolic relationship with the deposition time. Therefore we confirmed that the growth of $CoSi_2$layer was controlled by diffusion of cobalt. The thermal stability of $CoSi_2$layer on small grain-sized polycrystalline Si substrate has been investigated using sheet resistance measurement at temperature from $600^{\circ}C$ to $900^{\circ}C$. The $CoSi_2$layer was degraded at $900^{\circ}C$. Inserting a TiN interlayer between polycrystalline Si and $_CoSi2$layers improved the thermal stability of $CoSi_2$layer up to $900^{\circ}C$ due to the suppression of the Co diffusion.

Keywords

References

  1. E. G. Colgan, J. P. Gambino and Q. Z. Hong, Mater. Sci. Eng., R16, 43 (1996) https://doi.org/10.1016/0927-796X(95)00186-7
  2. K. Inoue, K. Mikagi, H. Abiko and T. Kikkawa, IEDM Tech. Digest 1995, 445 (1995) https://doi.org/10.1109/IEDM.1995.499234
  3. Q. Z. Hong, S. Q. Hong, F. M. D'Heurle and J. M. E. Haper, Thin Soli Film, 253, 479 (1994) https://doi.org/10.1016/0040-6090(94)90370-0
  4. J. P. Gambino, E. G. Colgan, A. G. Domenicucci and B. Cunningham, J. Electrochem. Soc., 145, 1384 (1998) https://doi.org/10.1149/1.1838470
  5. W. Chen, J. Lin, S. Banerjee and J. Lee, Meter. Res. Soc. Symp. Proc., 303, 81 (1999)
  6. S. Nygren and S. Johansson, J. Appl. Phys., 68, p1050 (1990) https://doi.org/10.1063/1.346744
  7. J. B. Lasky, J. S. Nakos, O. J. Cain and D. J. Geiss, IEEE Trans, Elect. Dev., ED-38, 262 (1991) https://doi.org/10.1109/16.69904
  8. S. Vaidya, S. P. Murarka and T. T. Sheng, J. Appl. Phys., 58, 971 (1985) https://doi.org/10.1063/1.336176
  9. W. T. Sun, H. M. Lee, M. C. Liaw and C. C. H. Hsu, Jpn. J. Appl. Phys., 37, 5854 (1998) https://doi.org/10.1143/JJAP.37.5854
  10. H. S. Rhee, T. W. Jang and B. T. Ahn, Appl. Phys. Lett., 74, 1003 (1999) https://doi.org/10.1063/1.123436
  11. H. S. Rhee and B. T. Ahn, Appl. Phys. Lett., 74, 3176 (1999) https://doi.org/10.1063/1.124067
  12. H. S. Rhee and B. T. Ahn, J. Electrochem. Soc., 146, 2720 (1999) https://doi.org/10.1149/1.1391999
  13. Z. G. Xiao, G. A. Rozgonyi, C. A. Canovai and C. M. Osburn, Mater. Res. Soc. Symp. Proc., 202, 101 (1991)
  14. W. M. Chen, S. K. Banerjee and J. C. Lee, Appl. Phys. Lett., 64(12), 1905 (1994) https://doi.org/10.1063/1.111738
  15. G. A. Dixit, C. C. Wei and F. T. Liou, Appl. Phys. Lett., 62, 357 (1993) https://doi.org/10.1063/1.109644