DOI QR코드

DOI QR Code

Study on DC Characteristics of 4H-SiC Recessed-Gate MESFETs

Recessed-gate 4H-SiC MESFET의 DC특성에 관한 연구

  • Park, Seung-Wook (Chip Pac Korea, R & D Center) ;
  • Hwang, Ung-Jun (Swmiconductor Materials/Devices Lab., Department of Ceramic Engineering Myoug Ji University) ;
  • Shin, Moo-Whan (Swmiconductor Materials/Devices Lab., Department of Ceramic Engineering Myoug Ji University)
  • 박승욱 (칩팩코리아 R&D Center) ;
  • 황웅준 (명지대학교 세라믹 공학과 반도체 재료/소자 연구실) ;
  • 신무환 (명지대학교 세라믹 공학과 반도체 재료/소자 연구실)
  • Published : 2003.01.01

Abstract

DC characteristics of recessed gate 4H-SiC MESFET were investigated using the device/circuit simulation tool, PISCES. Results of theoretical calculation were compared with the experimental data for the extraction of modeling parameters which were implemented for the prediction of DC and gate leakage characteristics at high temperatures. The current-voltage analysis using a fixed mobility model revealed that the short channel effect is influenced by the defects in SiC. The incomplete ionization models are found out significant physical models for an accurate prediction of SiC device performance. Gate leakage is shown to increase with the device operation temperatures and to decrease with the Schottky barrier height of gate metal.

Keywords

References

  1. M.Huang;N.Goldman;C.H.Chang;Isaak Mayegoyz;J.Mayergoyz;J.McGarrity;D.Woolard J. Appl. Phys. https://doi.org/10.1063/1.368267
  2. S. M. Sze, Physics of Semiconductor Devices, John Wiley and Sons, 2nd Ed. Chap.1, 2 (1981)
  3. Coreanu, M. Avram, E. Carbunescu and E. ILiescu, Material Science in Semiconductor Processing 3, 137 (2000) https://doi.org/10.1016/S1369-8001(00)00022-6
  4. J. Wang and W. B. Williams, Semiconductor. Science. Technol. 14, 220 (1999) https://doi.org/10.1088/0268-1242/14/12/314
  5. Alex Q, Huang and Bo Zhang, Solid-State Electronic. 44, 325 (2000) https://doi.org/10.1016/S0038-1101(99)00239-7
  6. Ravi K. Chilukuri, Praveen M. Shenoy and B. J. Baliga, Proc. of 1998 International Symposium on Power Semiconductor Devices & ICs, Kyoto, Japan, 115 (1998) https://doi.org/10.1109/ISPSD.1998.702648
  7. M. W. Shin, T. J. Kordas and R. J. Trew, Proc. of 1995 International Symposium on Power Semiconductor Devices & ICs, Yokohama, Japan, 497 (1995) https://doi.org/10.1109/ISPSD.1995.515088
  8. Kevin F. Brennan, Bellotti, Maziar Farahmand, Joe HaralsonⅡ, P. Paul Ruden, John D. Albreeht and A. Standi, Solid-State Elec. 44, 195 (2000) https://doi.org/10.1016/S0038-1101(99)00224-5
  9. M. Lades and G. Wachuttka, Solid-State Elec. 44, 359 (2000) https://doi.org/10.1016/S0038-1101(99)00243-9
  10. W.Wesch, Nuclear Instruments and Methods in Physics Research, B 116, 305 (1996) https://doi.org/10.1016/0168-583X(96)00065-1
  11. S. T. Allen, S. T. Sheppard, W. L. Pribble, R. A. Sadler, T. S. Alcorn, Z. Ring and J. W. Palmour, Proc. of Mat. Res. Soc. Symp. San Fransisco, CA, USA, 572, 15 (1999) https://doi.org/10.1557/PROC-572-15
  12. A. Elford and P. A. Mawby. Microelectronics Journal, 30, 527 (1998) https://doi.org/10.1016/S0026-2692(98)00175-X
  13. W. C. Schaffer, G. H. Negley, K. G. Irvine end J. W. Palmour, Proc. Mater. Res. Soc. Symp., 339, 595 (1994) https://doi.org/10.1557/PROC-339-595
  14. M. Rulf, H. Mitlehner and R. Helbig, IEEE Trans. Electron Devices, 41, 1040 (1994) https://doi.org/10.1109/16.293319
  15. D. Defives, O. Durand, F. Wyczisk, O. Noblanc, C. Brylinski and F. Meyer, Microelectronic Engineering, 55, 369 (2001) https://doi.org/10.1016/S0167-9317(00)00469-X