Finite Element Simulation of Laser-Generated Ultrasound and Interaction with Surface Breaking Cracks

유한요소법을 이용한 레이저 유도 초음파와 표면 균열과의 상호작용 모델링

  • 정현조 (원광대학교 기계자동차공학부) ;
  • 박문철 (원광대학교 공업기술연구소)
  • Published : 2004.06.30

Abstract

A finite element method is used to simulate interaction of laser-based ultrasounds with surface breaking tracks in elastic media. The laser line source focused on the surface of semi-infinite medium is modeled as a shear dipole in 2-D plane strain finite elements. The shear dipole-finite clement model is found to give correct directivity patterns for generated longitudinal and shear waves. The interaction of surface waves with surface breaking cracks (2-D machined slot) is considered in two ways. Both the source and receiver are fixed with respect to the cracks in the first case, while the source is moving in another case. It is shown that the crack depth tested in the range of 0.3-5.0mm $({\lambda}_R/d=0.21{\sim}3.45)$ can be measured using the corner reflected waves produced by the fixed laser source. The moving laser source is found to cause a large amplitude change of reflected waves near crack, and the crack whose depth is one order lower than the wavelength ran be detected from this change.

탄성매질에서 레이저 여기에 의한 열탄성 영역에서의 초음파 발생 현상과 표면 균열과의 상호작용을 유한요소법으로 모델링하였다. 반무한 탄성체 표면에 집속된 레이저 선원을 전단 쌍극자(shear dipole)로 모델링하고, 2차원 평면 변형율 유한요소법을 사용하였다. 발생된 표면파의 변위와 종파 및 횡파의 지향성을 관찰함으로써 전단 쌍극자-유한요소 모델의 타당성을 조사하였다. 표면파와 균열(기계가공된 2차원 홈)과의 상호작용을 관찰하기 위하여 2가지 경우를 고려하였다 먼저 레이저 소스와 수신 위치가 균열에 대하여 모두 고정되어 있는 경우, 다음으로 수신자가 고정되어 있고 소스가 시험체 표면 위를 이동하는 주사형의 경우이다. 첫 번째 경우에 균열 깊이 $0.3-5.0mm ({\lambda}_R/d=0.21{\sim}3.45)$에 대하여 균열 상단과 하단에서 각각 반사된 파의 변위로부터 균열깊이를 측정할 수 있음을 보였고, 두 번째 경우에 레이저 소스가 결함 위를 주사할 때 발생하는 반사파의 큰 진폭 변화를 통하여 파장보다 한 차원 낮은 깊이의 균열을 탐지할 수 있음을 보였다.

Keywords

References

  1. C. B. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and applications, pp. 237-242, Adam-Hilger, New York, (1990)
  2. 이승석, 장태성, '레이저 유도 초음파에 대한 이해‘, 비파괴검사학회지, Vol. 22, No.1, pp. 74-87, (2002)
  3. J. E. Sinclair, 'Epicentre solutions for point multipole sources in an elastic half-space,' J. Phys. D: Appl. Phys., Vol. 12, pp. 1309-1315, (1979) https://doi.org/10.1088/0022-3727/12/8/010
  4. L. R. F. Rose, 'Point-source representation for laser-generated ultrasound,' J. Acoust Soc. Am., Vol. 75, No. 3, pp. 723-732, (1984) https://doi.org/10.1121/1.390583
  5. D. A. Hutchins, R. J. Dewhurst and S. B. Palmer, 'Directivity patterns of laser-generated ultrasound in aluminum,' J. Acoust. Soc. Am., Vol. 70, No. 5, pp. 1362-1369, (1981) https://doi.org/10.1121/1.387126
  6. J. R. Bernstein, J. B. Spicer, 'Line source representation for laser-generated ultrasound in aluminum,' J. Acoust. Soc. Am., Vol. 107, No. 3, pp. 1352-1357, (2000) https://doi.org/10.1121/1.428422
  7. C. M. Scala and P. A. Doyle, 'Time-and-frequency domain characteristics of laser-generated ultrasonic surface technique,' J. Acoust. Soc. Am., Vol. 85, No. 4, pp. 1569-1576, (1989) https://doi.org/10.1121/1.397360
  8. P. A. Doyle and C. M., Scala, 'Near-field Rayleigh waves from a laser line source,' Ultrasonics, Vol. 34, pp. 1-8, (1996) https://doi.org/10.1016/0041-624X(95)00089-L
  9. D. Royer and C. Chenu, 'Experimental and theoretical waveforms of Rayleigh waves generated by a thermoelastic laser line source,' Ultrasonics, Vol. 38, pp. 891-895, (2000) https://doi.org/10.1016/S0041-624X(00)00022-6
  10. A. M. Aindow, R. J. Dewhurst, S. B. Palmer and C. B. Scruby, Unpublished work, (1985)
  11. C. B. Scruby, K. R. Jones and L. Antoniazzi, J. NDE, Vol. 5, pp. 3-4, (1987)
  12. M. G. Silk, 'Research Techniques in Nondestructive Testing,' Vol. 3, Eds. R. S Sharpe, Academic Press, New York, (1977)
  13. J. A. Cooper, R. J. Dewhurst and S. B. Palmer, 'Characterization of surface-breaking defects in metals with the use of laser-generated ultrasound,' Phil. Trans. R. Soc. Lond., Vol. A320, pp. 319-328, (1986)
  14. A. K. Kromine, P. A. Fomitchov, S Krishnaswamy and J. D. Achenbach, 'Laser ultrasonic detection of surface breaking discontinuities: Scanning laser source technique,' Mat. Eval., Vol. 58, No.2, pp. 173-177, (2000)
  15. Y. Sohn and S. Krishnaswamy, 'Mass spring lattice modeling of the scanning laser source technique,' Ultrasonics, Vol. 39, pp. 543-551, (2002) https://doi.org/10.1016/S0041-624X(02)00250-0
  16. ANSYS user's manual for revision 5.0, Swanson Analysis Systems, Houston, TX, (1992)
  17. D. Alleyne and P. Cawley, 'A two-dimensional Fourier transform method for measuremnent of propagating multimode signals,' J. Acoust. Soc. Am., Vol. 89, No. 3, pp. 1159-1168, (1991) https://doi.org/10.1121/1.400530
  18. K. Aki and P. G. Richards, Quantitative seismology, W. H. Freeman, San Francisco, (1980)
  19. P. A. Doyle, 'Calculation of ultrasonic surface waves from an extended thermoelastic laser source,' J. Nondestruc. Eval., Vol. 8, No. 3, pp. 147-164, (1989) https://doi.org/10.1007/BF00570884
  20. I. A. Viktorov, 'Rayleigh and Lamb waves,' Plenum press, New York, (1967)
  21. L. J. Bond, 'A computer model of the interaction of acoustic surface waves with discontinuitie,' Ultrasonics, Vol. 17, pp. 71-77, (1979) https://doi.org/10.1016/0041-624X(79)90099-4
  22. C. L. Pekeris, H. Lifson, 'Motion of the surface of a uniform elastic half-space produced by a buried pulse,' J. Acoust. Am., Vol. 29, pp. 1233-1238, (1957)