DOI QR코드

DOI QR Code

LiLa1-xNdx(MoO4)2 Single Crystal Growth by the Czochralski Method

쵸크랄스키법에 의한 LiLa1-xNdx(MoO4)2 단결정 육성 연구

  • 배인국 (한국지질자원연구원 자원활용소재연구부) ;
  • 채수천 (한국지질자원연구원 자원활용소재연구부) ;
  • 장영남 (한국지질자원연구원 자원활용소재연구부) ;
  • 김상배 (한국지질자원연구원 자원활용소재연구부)
  • Published : 2004.09.01

Abstract

Nd:LLM (Nd:LiLa(MoO$_4$)$_2$) single crystals for the laser host material were grown by the Czochralski method. The Nd:LLM grown single crystals cracked easily, and the reasons of cracks are generally related with phase transition, incongruent melting, chemical heterogeneity of composition, geometric thermal structures of imbalance and growth direction. We confirmed that phase transition is not observed by TG-DTA thermal analysis, and the XRD analysis revealed congruent melting in our products. It was confirmed that the volatilization of Li$_2$O composition is the important reason of chemical heterogeneity. The geometric thermal profile of the resistance furnace of our own design was controlled with a crucible height. Also, Nd:LLM crystal affected growth direction, and was the best quality in case of (101) growth direction. The distribution and effective distribution coefficient of Nd$^{3+}$ ion were accomplished by PIXE analysis.s.

레이저 모체재료용 Nd:LLM (Nd:LiLa(MoO$_4$)$_2$) 단결정을 쵸크랄스키법으로 성장시켰다 성장된 Nd:LLM 단결정은 균열 등이 쉽게 발생하였는데, 균열의 원인은 상전이, 불합치용융, 구성성분의 화학적 불균질, 열적구조의 불균형 및 성장방향 등이 있다. 성장된 단결정의 TG-DTA 열분석 결과 상전이는 없었으며, XRD 회절분석에 의해 합치 용융체임을 확인하였다. Li$_2$O 성분의 휘발은 화학적 불균질에 중요한 원인이었다. 자체 제작된 저항발열로의 온도프로파일은 도가니 높이로 조절하였다 또한, Nd:LLM 결정은 성장방향에 따라 단결정의 성장에 영향을 받았으며, (101)의 방향의 성장에서 단결정의 품질이 가장 우수하였다. 성장된 단결정의 N$d^{3+}$ 이온의 분포 및 유효편석계수은 PIXE분석에 의해 수행되었다.

Keywords

References

  1. T. H. Maiman, 'Stimulated Optical Radiation in Ruby,' Nature, 187 493-94 (1960) https://doi.org/10.1038/187493a0
  2. P. P. Sorokin and M. J. Stevenson, 'Stimulated Infrared Emission from Trivalent Uranium,' Phys. Rev. Lett., 5 557-59 (1960) https://doi.org/10.1103/PhysRevLett.5.557
  3. E. Snitzer, 'Optical Maser Action of $Nd^+^3$ in a Barium Crown Glass,' Phys. Rev. Lett., 7 444-46 (1961) https://doi.org/10.1103/PhysRevLett.7.444
  4. L. F. Johnson and L. Nassau, 'Harmonic Generation and Mixing of CaW04:Nd \{^3^+} and Ruby Pulsed Laser Beams in Piezoelectric Crystals,' Phys. Rev., 128 2175-79 (1962) https://doi.org/10.1103/PhysRev.128.2175
  5. J. E. Geusic, H. M. Marcos, and L. G. Van Uitert, 'Laser Oscillations in Nd-Doped Yttrium Aluminum, Yttrium Gallium, and Gadolinium Garnets' Appl. Phys. Lett., 4 [10] 182-84 (1964) https://doi.org/10.1063/1.1753928
  6. G. J. Kintz and T. Baer, 'Single-Frequency Operation in Solid-State Laser Materials with Short Absorption Depths,' IEEE J. Quantum Electron., 26 [9] 1457-59 (1990) https://doi.org/10.1109/3.102621
  7. P. V. Klevtsov and L. P. Kozeeva, 'Single-Crystal Synthesis and Single-Crystal Synthesis and Investigation of the Double Tungstates $NaR^3^+(WO_4)^2$ , where $R^3^+$ =Fe, Sc, Ga, and In,' J. Solid State Chern., 2 [2] 278-82 (1970) https://doi.org/10.1016/0022-4596(70)90080-0
  8. V. K. Trunov, V. A. Ephremov, and Y. A. Velikodny, 'Crystal Chemistry and Properties of Binary Molybdates and Tungstates,' Nauka, Leningrad (in Russian) (1986)
  9. Y N. Jang, N. H. Sung, S. C. Chae, I. K. Bae, and I. J. Kim, 'Development of Frequency Weighing Sensor and Single Crystal Growth,' Kor. J. Cryst., 8 [1] 38-47 (1997)
  10. 'T. K. Lee and S. J Chung,'Exsolution of Bi4Ge301Z in BilZGeOZO Crystals Grown by Pulling Method,' J. Kor. Ceram. Soc., 28 [2] 981-88 (1991)
  11. A. A. Kaminski, D. Schultze, B. Hermoneit, S. E. Sarkisov, L. Li. J. Bohm, P. Reiche, R. Ehlert, A. A. Mayer, V. A. Lomonov, and V. A. Balashov,'Spetroscopoic Properties and Stimulated Emission in the $^4F_{3/2}\rightarrow^4I_{11/2}$ and $^4F_{3/2}\rightarrow^4I_{13/2}$ Transition of $Nd^3^+$ Ions from Cubic $Bi_4Ge_3O_12$ Crystals' Phys. Stat. Sol. (a), 33 737-53 (1976) https://doi.org/10.1002/pssa.2210330234