DOI QR코드

DOI QR Code

Study of Selective Etching of GaAs over AlGaAs and InGaP Semiconductors in High Density Planar Inductively Coupled BCl3/SF6 Plasmas

고밀도 평판형 유도결합 BCl3/SF6 플라즈마를 이용한 GaAs/AlGaAs와 InGaP 반도체의 선택적 식각에 관한 연구

  • Yoo Seungryul (School of Nano Eng./Institute of Nano-Technology Applications, Inje Univ.) ;
  • Ryu Hyunwoo (School of Nano Eng./Institute of Nano-Technology Applications, Inje Univ.) ;
  • Lim Wantae (School of Nano Eng./Institute of Nano-Technology Applications, Inje Univ.) ;
  • Lee Jewon (School of Nano Eng./Institute of Nano-Technology Applications, Inje Univ.) ;
  • Cho Guan Sik (School of Nano Eng./Institute of Nano-Technology Applications, Inje Univ.) ;
  • Jeon Minhyon (School of Nano Eng./Institute of Nano-Technology Applications, Inje Univ.) ;
  • Song Hanjung (School of Nano Eng./Institute of Nano-Technology Applications, Inje Univ.) ;
  • Lee BongJu (National Fusion R&D Center, Korea Basic Science Institute(KBSI)) ;
  • Ko Jong Soo (Department of Mechanical Eng., Pusan National Univ.) ;
  • Go Jeung Sang (Department of Mechanical Eng., Pusan National Univ.) ;
  • Pearton S. J. (Department of Materials Sci. and Eng., University of Florida)
  • 유승열 (인제대학교 나노공학부/나노기술 응용연구소) ;
  • 류현우 (인제대학교 나노공학부/나노기술 응용연구소) ;
  • 임완태 (인제대학교 나노공학부/나노기술 응용연구소) ;
  • 이제원 (인제대학교 나노공학부/나노기술 응용연구소) ;
  • 조관식 (인제대학교 나노공학부/나노기술 응용연구소) ;
  • 전민현 (인제대학교 나노공학부/나노기술 응용연구소) ;
  • 송한정 (인제대학교 나노공학부/나노기술 응용연구소) ;
  • 이봉주 (한국 기초과학 지원연구원 핵융합 연구개발 사업단) ;
  • 고종수 (부산대학교 기계공학부) ;
  • 고정상 (부산대학교 기계공학부) ;
  • Published : 2005.03.01

Abstract

We investigated selective dry etching of GaAs over AlGaAs and InGaP in high density planar inductively coupled $BCl_3/SF_6$ plasmas. The process parameters were ICP source power (0-500 W), RE chuck power (0-30W) and gas composition $(60-100\%\;BCl_3\;in\;BCl_3/SF_6)$. The process results were characterized in terms of etch rate, selectivities of GaAs over AlGaAs and InGaP, surface morphology, surface roughness and residues after etching. $BCl_3/SF_6$ selective etching of GaAs showed quite good results in this study. Selectivities of GaAs $(GaAs:AlGaAs\~36:1,\;GaAs:InGaP\~45:1)$ were superior at $18BCl_3/2SF_6$, 20 W RF chuck power, 300 W ICP source power and 7.5 mTorr. Addition of $(5-15\%)SF_6\;to\;BCl_3$ produced relatively high selectivities of GaAs over AlGaAs and InGaP during etching due to decrease of etch rates of AlGaAs and InGaP (boiling points of etch products: $AlF_3\~1300^{\circ}C,\;InF_3>1200^{\circ}C$ at atmosphere) at the condition. SEM and AFM data showed slightly sloped sidewall and somewhat rough surface$(RMS\~9nm)$. XPS study on the surface of processed GaAs proved a very clean surface after dry etching. It shows that planar inductively coupled $BCl_3/SF_6$ plasmas could be a good candidate for selective dry etching of GaAs over AlGaAs and InGaP.

Keywords

References

  1. T. Yoshikawa, S. Kohmoto, S. Sugimoto and K. Askawa, Electronics and Communications in Japan, Part 2 (Electronics), 77, 24 (1994) https://doi.org/10.1002/ecjb.4420770803
  2. A. Matsutani, F. Koyama and K. Iga, Jap. J. Appl. Phys., 33, 6737 (1994) https://doi.org/10.1143/JJAP.33.6737
  3. O. Wada, Microelectronics Reliability, 39, 1839 (1999) https://doi.org/10.1016/S0026-2714(99)00193-6
  4. K. Mochizuki, T. Oka, K. Ouchi and T. Tanoue, Solid-State Electron., 43, 1425 (1999) https://doi.org/10.1016/S0038-1101(99)00084-2
  5. Y. J. Sung, H. S. Kim, Y. H. Lee, J. W. Lee, S. H. Chae, Y. J. Park, G.Y. Yeom, Mater. Sci. Eng., B 82, 50 (2001) https://doi.org/10.1016/S0921-5107(00)00716-9
  6. F. Ren, F. F. Kopf, J. M. Kuo, J. R. Lothian, J. W. Lee, S. J. Pearton, R. J. Shul, C. Constantine and D. Johnson, Solid State Electronics, 42, 749 (1998) https://doi.org/10.1016/S0038-1101(97)00292-X
  7. J. W. Lee, K. D. Mackenzie, D. Johnson, R. J. Shul, S. J. Pearton, C. R. Abernathy and F. Ren, Solid State Electronics, 42, 1027 (1998) https://doi.org/10.1016/S0038-1101(98)80025-7
  8. Shawn S. H. Hsu, Burhan Bayraktaroglu and Dimitris Pavlidis, Solid-state Electronics, 43, Issue 8, 1429 (August 1999) https://doi.org/10.1016/S0038-1101(99)00085-4
  9. R. J. Shul and S. J. Pearton, eds., Handbook of Advanced Plasma Processing Techniques (Springer, Berlin, 2000)
  10. Y. M. Hsin, M. Y. Li, C. W. Tu and P. M. Asbeck, Journal of Crystal Growth, 188, 355 (1998) https://doi.org/10.1016/S0022-0248(98)00099-2
  11. J. W. Lee, C. R. Abernathy, S. J. Pearton, F. Ren, R. J. Shul, C. Constantine and C. Barratt, Solid-State Electronics, 41(6), 829 (1997) https://doi.org/10.1016/S0038-1101(97)00026-9
  12. D. C. Hays, H. Cho, K. B. Jung, Y. B. Hahn, C. R. Abernathy, S. J. Pearton, F. Ren, W. S. Hobson, Appl. Surface Science, 147, 255 (1999)
  13. C. S. Lin, Y. K. Fang, S. F. Chen, C. Y. Lin, M. C. Hsieh, C. C. Wang, H. K. Huang, C. L. Wu and C. S. Chang, Materials Science in Semiconductor Processing, 7, 59 (2004) https://doi.org/10.1016/j.mssp.2004.01.001
  14. W. T. Lim, I. K. Baek, P. G. Jung, J. W. Lee, G. S. Cho and S. J. Pearton, Korean J. of Materials Research, 13(4), 266 (2003) https://doi.org/10.3740/MRSK.2003.13.4.266