Relationship between Divergent Thinking in Mathematical and Non-Mathematical Situations -Based on the TTCT; Figural A and the MCPSAT-

수학적 상황과 비수학적 상황에서의 확산적 사고의 관계 연구 - TTCT의 도형검사와 MCPSAT를 중심으로 -

  • Published : 2005.06.30

Abstract

We examined the relations between the score of the divergent thinking in mathematical (Mathematical Creative Problem Solving Ability Test; MCPSAT: Lee etc. 2003) and non-mathematical situations (Torrance Test of Creative Thinking Figural A; TTCT: adapted for Korea by Kim, 1999). Subjects in this study were 213 eighth grade students(129 males and 84 females). In the analysis of data, frequencies, percentiles, t-test and correlation analysis were used. The results of the study are summarized as follows; First, mathematically gifted students showed statistically significantly higher scores on the score of the divergent thinking in mathematical and non-mathematical situations than regular students. Second, female showed statistically significantly higher scores on the score of the divergent thinking in mathematical and non-mathematical situations than males. Third, there was statistically significant relationship between the score of the divergent thinking in mathematical and non-mathematical situations for middle students was r=.41 (p<.05) and regular students was r=.27 (p<.05). A test of statistical significance was conducted to test hypothesis. Fourth, the correlation between the score of the divergent thinking in mathematical and non-mathematical situations for mathematically gifted students was r=.11. There was no statistically significant relationship between the score of the divergent thinking in mathematical and non-mathematical situations for mathematically gifted students. These results reveal little correlation between the scores of the divergent thinking in mathematical and non-mathematical situations in both mathematically gifted students. Also but for the group of students of relatively mathematically gifted students it was found that the correlations between divergent thinking in mathematical and non-mathematical situations was near zero. This suggests that divergent thinking ability in mathematical situations may be a specific ability and not just a combination of divergent thinking ability in non-mathematical situations. But the limitations of this study as following: The sample size in this study was too few to generalize that there was a relation between the divergent thinking of mathematically gifted students in mathematical situation and non-mathematical situation.

본 연구의 목적은 수학적 상황에서의 확산적 사고와 비수학적 상황에서의 확산적 사고의 관계를 조사하기 위하여 중학교 2학년 학생 215명을 대상으로 검사를 실시하여 자료를 분석하였다. 자료 분석은 빈도, 퍼센트, t-검증과 상관 분석을 사용하였다. 본 연구의 결과는 첫 번째, 수학 영재 학생이 일반 학생보다 수학적 상황에서의 확산적 사고(MCPSAT)와 비 수학적 상황에서의 확산적 사고(TTCT)는 통계적으로 유의미하게 높은 점수를 받았다. 두 번째, 여학생이 남학생보다 비 수학적 상황에서의 확산적 사고(TTCT)에서 제목의 추상성을 제외하고 모든 요소에서 통계적으로 유의미하게 높은 점수를 받았다. 세 번째, 남학생이 여학생보다 수학적 상황에서의 확산적 사고에서 유창성과 융통성은 평균이 높게 나타나고 있으나 통계적으로는 유의미하지 않고 여학생이 남학생보다 수학적 상황에서의 확산적 사고에서 독창성의 평균이 높게 나타나고 있으며 통계적으로 유의미하게 나타나고 있다. 네 번째, 수학적 상황과 비 수학적 상황에서의 확산적 사고 점수사이의 상관관계는 통계적으로 유의미하게 나타나고 있으며 중학생 전체에서는 r=.41(p<.05)이고 r=.21에서 r=.56까지 분포하고 있으며 일반 학생은 r=.27(p<.05)이고 r =.07에서 r=.27까지 분포하고 있다. 다섯 번째로 수학 영재학생의 경우는 수학적 상황과 비 수학적 상황에서의 확산적 사고 점수사이의 상관관계는 r=.11이며 통계적으로 유의미하지 않게 나타나고 있다. 이 결과는 수학 영재학생의 경우 수학적 상황과 비 수학적 상황에서의 확산적 사고 점수사이의 상관관계는 거의 0에 가깝다고 할 수 있다. 이것은 수학적 상황에서의 확산적 사고능력은 비 수학적인 상황에서의 확산적 사고 조합된 능력이 아니라 다른 특별한 능력이라고 볼 수 있다. 그러나 본 연구에서 수학 영재 학생들의 사례수가 적어서 수학 영재 학생의 수학적 상황과 비 수학적 상황에서의 확산적 사고 점수 사이의 상관관계가 있다는 주장을 일반화하기에는 충분치 않을 수 있다는 제한점을 가지고 있다.

Keywords

References

  1. Anastasi, A. (1982). Psychological testing. New York: Macmillan
  2. Bachelor, P. & Michae, W. B. (1991). Higher order factor of creativity within Guilford's structure of intellect model: A reanalysis of a 53 variable database. Creativity Research Journal, Vol 4, 157-175 https://doi.org/10.1080/10400419109534383
  3. Balka, D. S. (1974). The Development of An Instrument to Measure Creative Ability in Mathematics, Ph. D. Dissertation in University of Missouri. (UMI)
  4. Becker, J. P. & Shimada, S. (1997). The open-ended approach: a new proposal for teaching mathematics. Reston, Virginia: NCTM
  5. Chase, C. I. (1985). Review of the Torrance tests of creative thinking. In O. K. Buros, (Ed.), The ninth mental measurements yearbook. Lincoln, NB: Buros Institute of Mental Measurements, pp. 1631-1632
  6. Davis, G. A. (1989). Testing for creative potential. Contemporary Educational Psychology, Vol. 14, pp. 257-274 https://doi.org/10.1016/0361-476X(89)90014-3
  7. Dillon, J. T. (1982). Problem Finding and Solving. Journal of Creative Behavior, Vol. 16, pp. 97-111 https://doi.org/10.1002/j.2162-6057.1982.tb00326.x
  8. Dillon, J. T. (1988). Levels of Problem Finding VS Problem Solving. In: questioning exchange, Vol. 2(2), pp. 105-115
  9. Dirkes, M. A. (1974). The Effect of Divergent Thinking Experiences on Creative Production and Transfer Between Mathematical and Nonmathematical Domains. State of the University of Wayne. Ed D
  10. Dunn, J. A. (1976). Divergent thinking and mathematics education. M. Phil. thesis, New University of Coleraine, N. Ireland
  11. Evans, E. W. (1964). Measuring the Ability of Students to Respond to Creative Mathematical Situations at the Late Elementary and Early Junior High School Level. Doctorial Dissertation, University of Michigan
  12. Fredericksen, N. (1984). Implications of cognitive theory for instruction in problem solving. Review of Educational Research, 43, pp. 363-407
  13. Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books
  14. Haylock, D. W. (1978). An Investigation Into the Relationship Between Divergent Thinking in Non-Mathematical and Mathematical Situations. Mathematics in School, 7, 2, pp. 25, Mar 78
  15. Isaksen, S. G. & Puccio, G. J. (1988). Adaption-Innovation and the Torrance tests of creative thinking: the level-style issue revisited. Psychological Reports, 63, pp. 659-670 https://doi.org/10.2466/pr0.1988.63.2.659
  16. Kim, H. W., Kim, M. S., Bang, S. J., & Hwang, D. J(1997). Development of the Test for Mathematical Creative Problem Solving Ability (II). The Report CR97-50, Korea Education Development Institute
  17. Kim, Y. (1998). The Torrance tests of creative thinking: Norms-technical Manual of the Korean version. ChungAng Aptitude Press
  18. Lee, K. S. & Hwang, D. J. (2003). A Study on the Relationship between General Creativity and Mathematical Creativity-Based on the TTCT; Figural A and the MCPSAT A-, Journal of Korean Society Mathematics Education, Series A: The Mathematics Education Vol. 42(1), pp. 1-9
  19. Lee, K. S., Hwang, D. J. & Seo, J. J. (2003). A Development of the Test for Mathematical Creative Problem Solving Ability. Journal of the Korea Society of Mathematical Education Series D: Research in Mathematical Education Vol. 7, No. 3, pp. 163-189
  20. Livacre, J. M. & Wright, B. D. (2003). A User's Guide to BIGSTEPS Rasch-Model Computer Programs. Winsteps.com
  21. NCTM(2000). Principles and Standard for School Mathematics. Reston, Virginia: NCTM
  22. Ramirez, V. E. (2002). Finding the right problem. Asia Pacific Education Review, 3, 18-23 https://doi.org/10.1007/BF03024917
  23. Reiter-Palmon, R., Mumford, M. D., Boes, J. O., & Runco, M. A. (1997). Problem construction and creativity: The role of ability, cue consistency, and active processing. Creativity Research Journal, Vol. 10, pp. 9-23 https://doi.org/10.1207/s15326934crj1001_2
  24. Runco, M. A. (1986). Predicting children's creative performance. Psychological Reports. Vol. 59. pp. 1247-1254
  25. Runco, M. A. (1990). Implicit theories and ideational creativity. In M. A. Runco & R. S. Albert (Eds.), Theories of creativity, pp. 234-252). Newbury Park, CA: Sage
  26. Runco, M. A. (1991). Divergent-thinking. Norwood, NJ: Ablex
  27. Runco, M. A. & Chand, I. (1995). Cognition and creativity. Educational Psychology Review. Vol. 7, pp. 243-267 https://doi.org/10.1007/BF02213373
  28. Torrance, E. P. (1966). Torrance Tests of Creative Thinking: Norms Technical Maunal. New Jersey: Personell Press
  29. Torrance, E. P. (1990). The Torrance Tests of Creative thinking: Norms-Technical manual (figural). Bensenvill, IL: Scholastic Testing Service
  30. Torrance, E. P. (1992). The Torrance Tests of Creative thinking: Streamlined scoring guide (figural). Bensenvill, IL: Scholastic Testing Service
  31. Torrance, E. P. & Yun Horng, R. (1980). Creativity, style of learning and thinking characteristics of adaptors and innovators. The Creative Child & Adult Quarterly, Vol. 5, pp. 80-85
  32. Voss, J. F. & Means, M. L. (1989). Towards a model of creativity based upon problem solving in social sciences. In: Glover, J. A., Ronning, R.R., & Reynolds, C. R. (Eds.), Handbook of Creativity: New York: Plenum Press, pp. 399-410
  33. Yamamoto, K. & Frengel, B. A. (1966). An exploratory component analysis of the Minnesota tests of creative thinking. California Journal of Educational Research, Vol. 17, pp. 220-229
  34. Yoshihiko, H. (1997). The Methods of Fostering Creativity through Mathematical Problem Solving. ZDM Vol. 29(3), pp. 86-87 https://doi.org/10.1007/s11858-997-0005-8