DOI QR코드

DOI QR Code

Pseudomonas putida Strain 17 Isolated from Replant Soil Promotes Tomato Growth and Inhibits Conidial Germination of Soilborne Plant Pathogens

  • Lee, Sang-Woo (Gyeonggi Province Agricultural Research and Extension Services) ;
  • Ahn, Il-Pyung (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Lim, Jae-Wook (Gyeonggi Province Agricultural Research and Extension Services) ;
  • Lee, Yong-Hwan (Schools of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
  • Published : 2005.09.01

Abstract

The induction of growth promotion on numerous crops by rhizobacteria is a well documented phenomenon. In case of tomato (Lycopersicon esculentum), fruit yield is higher in replant soil than that in fresh soil. To investigate what kind of rhizobacterium is involved, microbial community in rhizosphere and on rhizoplane of tomato plants from each soil was analyzed by dilution plating on selective media. Many Gram-negative bacteria and actinomycetes were isolated from tomato in replant soil. One Gram-negative rhizobacterium isolated was identified as Pseudomonas putida based on its biochemical characteristics, fatty acid methyl ester analysis and 16S rDNA sequence. This bacterium designated strain 17 inhibited the growth of Pseudomonas corrugata, and increased growth of tomato seedlings. In addition, its culture filtrate inhibited conidial germination of plant-pathogenic fungi such as Fusarium oxysporum f. sp. radicis-lycopersici, F. oxysporum f. sp. cucumerinum, and Nectria radicicola. Scanning electron microscopy revealed strain 17 colonized and persisted on the epidermal surfaces of tomato radicles and roots. These results suggest that P. putida strain 17 may serve as a biological control agent to suppress multiple soil-borne diseases for tomato plants. Increased microbial populations that suppress deleterious microorganisms including pathogens could be one of the major factors in increased tomato yield in replant soil.

Keywords

References

  1. Alvarez, M. A. B., Gagne, S. and Anton, H. 1995. Effect of compost on rhizosphere microflora of the tomato and on the incidence of plant growth-promoting rhizobacteria. Appl. Environ. Microbiol. 61:194-199
  2. Anith, K. N., Momol, M. T., Kloepper, J. W., Marois, J. J., Olson, S. M. and Jones, J. B. 2004. Efficacy of plant growth-promoting rhizobacteria, acibenzolar-S-methyl, and soil amendment for integrated management of bacterial wilt on tomato. Plant Dis. 88:669-673 https://doi.org/10.1094/PDIS.2004.88.6.669
  3. Anjaiah, V., Cornelis, P. and Koedam, N. 2003. Effect of genotype and root colonization in biological control of fusarium wilts in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1. Can. J. Microbiol. 49:85-91 https://doi.org/10.1139/w03-011
  4. Bianciotto, V., Andreotti, S., Balestrini, R., Bonfante, P. and Perotto, S. 2001. Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots. Mol. Plant-Microbe Interact. 14:255-260 https://doi.org/10.1094/MPMI.2001.14.2.255
  5. Broadbent, P. and Baker, K. F. 1974. Behavior of Phytophthora cinnamoni in oils suppressive and conducive to root rot. Aust. J. Agric. Res. 25:121-137 https://doi.org/10.1071/AR9740121
  6. Chanway, C. P. 2000. Endophytic colonization and field responses of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria. Forest Ecol. Management 133:81-88 https://doi.org/10.1016/S0378-1127(99)00300-X
  7. Cook, R. J. and Rovira, A. D. 1976. The role of bacteria in the biological control of Gaeumannomyces graminis by suppressive soils. Soil. Biol. Biochem. 8:267-273 https://doi.org/10.1016/0038-0717(76)90055-9
  8. Corke, C. T. and Chase, F. E. 1956. The selective enumeration of Actinomycetes in the presence of large number of fungi. Can. J. Microbiol. 2:12-15 https://doi.org/10.1139/m56-003
  9. Dorai, M., Papadopoulos, A. P. and Gosselin, A. 2001. Influence of electrical conductivity management on greenhouse tomato yield and fruit quality. Agronomie 21:367-383 https://doi.org/10.1051/agro:2001130
  10. Gagne, S., Dehbi, L., Le Quere, D., Cayer, F., Morin, J., Lemay, R. and Fournier, N. 1993. Increase of greenhouse tomatoes fruit yields by plant growth-promoting rhizobacteria (PGPR) inoculated into the peat-based growing media. Soil. Biol. Biochem. 25:269-272 https://doi.org/10.1016/0038-0717(93)90038-D
  11. Gould, W. D., Hagedorn, C., Bardinelli, T.R. and Zablotowicz, R. M. 1985. New selective media for enumeration and recovery of fluorescent pseudomonads form various habitats. Appl. Environ. Microbiol. 49:28-32
  12. Jeong, Y., Kim, J., Kim, S., Kang, Y., Nagamatsu, T. and Hwang, I. 2003. Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Dis. 87:890-895 https://doi.org/10.1094/PDIS.2003.87.8.890
  13. Jetiyanon, K., Fowler, W. D. and Kloepper, J. W. 2003. Broad-spectrum protection against several pathogens by PGPR mixtures under field conditions in Thailand. Plant Dis. 87:1390-1394 https://doi.org/10.1094/PDIS.2003.87.11.1390
  14. Kado, C. T. and Heskett, M. G. 1970. Selective media for isolation of Agrobacterium, Corynebacterium, Erwinea, Pseudomonas, and Xanthomonas. Phytopathology 60:969-976 https://doi.org/10.1094/Phyto-60-969
  15. Kerry, B. R. 1988. Fungal parasites of cyst nematodes. Agric. Ecosyst. Environ. 24:293-305 https://doi.org/10.1016/0167-8809(88)90073-4
  16. Kim, D. S., Weller, D. M. and Cook, R. J. 1997. Population dynamics of Bacillus sp. L324-92R (12) and Pseudomonas fluorescens 2-79RN (10) in the rhizosphere of wheat. Phytopathology 87:559-564 https://doi.org/10.1094/PHYTO.1997.87.5.559
  17. Kloepper, J. W. 1997. Bacterial endophytes in cotton-Mechanism of entering the plant. Can. J. Microbiol. 43:577-582 https://doi.org/10.1139/m97-081
  18. Kloepper, J. W., Ryu, C. M. and Zhang, S. 2004. The nature and application of biocontrol microbes: Bacillus spp. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-1266 https://doi.org/10.1094/PHYTO.2004.94.11.1259
  19. Kloepper, J. W., Schroth, M. N. and Miller, T. D. 1980. Effect of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70: 1078-1082 https://doi.org/10.1094/Phyto-70-1078
  20. Lemanceau, P., Corberand, T., Gardan, L., Latour, X., Laguerre, G., Boeufgras, J. and Alabouvette, C. 1995. Effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations of fluorescent Pseudomonads. Appl. Environ. Microbiol. 61:1004-1012
  21. Mahaffee, W. F. and Kloepper, J. W. 1997. Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativus L.). Microbial Ecology 34:210-223 https://doi.org/10.1007/s002489900050
  22. Mazzola, M. 1999. Transformation of soil microbial community structure and Rhizoctonia-suppressive potential in response to apple roots. Phytopathology 89:920-927 https://doi.org/10.1094/PHYTO.1999.89.10.920
  23. Mazzola, M., Granatstein, D. M., Elfving, D. C., Mullinix, K. and Gu, Y. H. 2002. Cultural management of microbial community structure to enhance growth of apple in replant soils. Phytopathology 92: 1363-1366 https://doi.org/10.1094/PHYTO.2002.92.12.1363
  24. Mazzola, M. and Gu, Y.-H. 2002. Wheat genotype-specific induction of soil microbial communities suppressive to disease incited by Rhizoctonia solani anastomosis group (AG)-5 and AG-8. Phytopathology 92: 1300-1307 https://doi.org/10.1094/PHYTO.2002.92.12.1300
  25. Menzies, J. D. 1959. Occurrence and transfer of a biological factor in soil that suppressive potato scab. Phytopathology 49:648-652
  26. Ministry of Agriculture and Forestry. 2004. Crops statistics. pp. 255
  27. Murphy, J. F., Reddy, M. S., Ryu, C.-M., Kloepper, J. W. and Li, R. 2003. Rhizobacteria-mediated growth promotion of tomato leads to protection against Cucumber mosaic virus. Phytopathology 93: 1301-1307 https://doi.org/10.1094/PHYTO.2003.93.10.1301
  28. Murphy, J. F., Zehnder, G. W., Schuster, D. J., Sikora, E. J., Polston, J. E. and Kloepper, J. W. 2000. Plant growth-promoting rhizobacterial mediated protection in tomato against Tomato mottle virus. Plant Dis. 84:779-784 https://doi.org/10.1094/PDIS.2000.84.7.779
  29. Raupach, G. S. and Kloepper, J. W. 1998. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88: 1158-1164 https://doi.org/10.1094/PHYTO.1998.88.11.1158
  30. Rural Development Administration. 1988. Chemical analysis of soil. Sammi Publisher, Suwon, Korea. pp. 26-205 (in Korean)
  31. Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026 https://doi.org/10.1104/pp.103.026583
  32. Scher, F. M. and Baker, R. 1980. Mechanism of biological control in a Fusarium-suppressive soil. Phytopathology 70:412-417 https://doi.org/10.1094/Phyto-70-412
  33. Shiomi, Y., Nishiyama, M., Onizuka, T. and Marumoto, T. 1999. Comparison of bacterial community structures in the rhizoplane of tomato plants grown in soils suppressive and conducive towards bacterial wilt. Appl. Environ. Microbiol. 65:3996-4001
  34. Viret, O., Keller, M., Jaudzems, V. G. and Cole, F. M. 2004. Botrytis cinerea infection of grape flowers: Light and electron microscopical studies of infection sites. Phytopathology 94:850-857 https://doi.org/10.1094/PHYTO.2004.94.8.850
  35. Westphal, A. and Becker, J. O. 1999. Biological suppression and natural population decline of Heterodera schachtii in a California field. Phytopathology 89:434-440 https://doi.org/10.1094/PHYTO.1999.89.5.434
  36. Willumsen, J., Petersen, K. K. and Kaack, K. 1996. Yield and blossom-end rot of tomato as affected by salinity and cation activity ratios in the root zone. J. Hort. Sci. 71:81-98 https://doi.org/10.1080/14620316.1996.11515385
  37. Wohanka, B. B. W. and Wolf, G. A. 1994. Characterization of the bacterial flora in circulating nutrient solution of a hydroponic system with rockwool. Acta Horticulture 361:372-381

Cited by

  1. Rhizobacteria-Induced Priming inArabidopsisIs Dependent on Ethylene, Jasmonic Acid, andNPR1 vol.20, pp.7, 2007, https://doi.org/10.1094/MPMI-20-7-0759
  2. Pseudomonas sp. LSW25R, antagonistic to plant pathogens, promoted plant growth, and reduced blossom-end rot of tomato fruits in a hydroponic system vol.126, pp.1, 2010, https://doi.org/10.1007/s10658-009-9514-3
  3. Priming by rhizobacterium protects tomato plants from biotrophic and necrotrophic pathogen infections through multiple defense mechanisms vol.32, pp.1, 2011, https://doi.org/10.1007/s10059-011-2209-6