The thermal stabilization characteristics of electrolyte membrane in high temperature electrolysis[HTE]

고온 수전해 전해질 막의 열안정화 특성 고찰

  • Choi, Ho-Sang (Laboratory of Membrane Separation Process, Dept. of Chem. Eng., Kyungil University) ;
  • Son, Hyo-Seok (Laboratory of Membrane Separation Process, Dept. of Chem. Eng., Kyungil University) ;
  • Sim, Kyu-Sung (Hydrogen Production Research Center, Korea Institute of Energy Research) ;
  • Hwang, Gab-Jin (Hydrogen Production Research Center, Korea Institute of Energy Research)
  • 최호상 (경일대학교 생명화학공학과) ;
  • 손효석 (경일대학교 생명화학공학과) ;
  • 심규성 (수소에너지연구센터, 한국에너지기술연구원) ;
  • 황갑진 (수소에너지연구센터, 한국에너지기술연구원)
  • Published : 2005.06.15

Abstract

Added ratio of 8YSZ powder and organic compounds (solvent, plasticizer, dispersant, binder) properly. It manufactured electrolysis membrane by wet process that make slurry and dry process that do not use organic compounds. In the case of wet process, harmony combination and method of organic compound are an importance element in slurry manufacture. This slurry did calcine at temperature of 140$^{\circ}C$ in Furnace and manufactured electrolyte disk by Dry pressing method. Like this, manufacturing disk sintered at temperature of $1300^{\circ}C,\;1400^{\circ},\;1500^{\circ}C$ in Furnace and completed electrolysis membrane. Confirmed change of crystal structure and decision form through analysis of density, SEM, XRD according to change of sintering temperature, and considered relation with ion conductivity.

Keywords

References

  1. W. Kreuter, H. Hofmann : Int. J. Hydrogen Energy, Vol. 23, 1998, pp. 661-666 https://doi.org/10.1016/S0360-3199(97)00109-2
  2. C. A. Schug: Int. J. Hydrogen Energy, Vol. 23, 1998, pp. 1113-1120 https://doi.org/10.1016/S0360-3199(97)00139-0
  3. B. Campilia, P. J. Sebastian, S. A. Gamboa, J. J. Albarran : Masterials Science and Engineering: C, Vol. 19, 2002, pp. 115-118 https://doi.org/10.1016/S0928-4931(01)00457-X
  4. F. S. Hoar, C. J. Aravinda, M. F. Ahmed: J. Power Sources, Vol. 103, 2001, P. 147-149 https://doi.org/10.1016/S0378-7753(01)00824-2
  5. Ph. Vermeiren, W. Adriansens, I. P. Moreels Int. J. Hydrogen Energy, Vol. 23, 1998, pp.321-324 https://doi.org/10.1016/S0360-3199(97)00069-4
  6. M. U. K1einke, M. Knobel, L. O. Bonugli : Int. J. Hydrogen Energy, Vol. 22, 1997, pp. 759-762 https://doi.org/10.1016/S0360-3199(96)00211-X
  7. W. Donitz, G. Dietrich, E. Erd1e : Int. J. Hydrogen, Energy, Vol. 13, 1988, P. 283 https://doi.org/10.1016/0360-3199(88)90052-3
  8. W. Donitz, E. Erdle : Int. J. Hydrogen Energy, Vol. 10, 1985, P. 291 https://doi.org/10.1016/0360-3199(85)90181-8
  9. W. Donitz, E. Erdle and R. Streicher : 'Electrochemical Hydrogen technology', H. wendt, Elsevier, Amsterdam, Netherlands. 1990
  10. J. Mizusaki, H. Tagawa, K. Tsuneyoshi, A. sawata, M. Katou and K. Hirano, Denki Kagaku, Vol. 58, 1990, pp. 520-527
  11. K. Huang, M. Feng, and I. B. Goodenough: J. Am. Cerm. Soc. Vol. 81, 1998, pp. 357-362 https://doi.org/10.1111/j.1151-2916.1998.tb02341.x
  12. O. Yamamoto, Y. Arati, Y. Takeda, N. Imanishi : Solid State Ionic Materials, World Scientific Publishing Co, London, 1994, P. 51
  13. O. Yamamoto, Y. Arati, Y. Takeda, N. Imanishi : Solid State Ionic Materials, World Scientific Publishing Co, London, 1994, P. 733
  14. J. F. Baumard, P. Abelard, N. Claussen, M. Ruhle : Science and Technology of Zirconia II, The American Ceramic Society, Westerville, 1984, P. 555
  15. A. K. Maiti, B. Rajender : Materials Science and Engineering A, Vol. 333, 2002, pp. 35-40 https://doi.org/10.1016/S0921-5093(01)01821-4
  16. L. Braun, J. R. Morris : Am. Ceram. Soc. Bull., Vol. 64, 1985, pp. 727-729
  17. M. Kleitz, C. Pescher, L. Dessemond :Science and Technology of Zirconia V, Technomic, Lanster, PA, Vol. 9, 1993, P. 593
  18. L. Dessemond, J. Guindet, F. Grosz, P. Zegers : Proceedings of the 2nd International Symposium on SOFC, brussels, Belgium, 1991, P. 409
  19. I. R. Gibson, G.P Dransfield, I.T.S. Irvine: J. Master. Sci. Vol. 33, 1998, P. 4297 https://doi.org/10.1023/A:1004435504482
  20. F. S. Brugner : Marquette University, Milwaukee, WI, 1971
  21. A. Cheikh, A. Madani, A. Touati, I : J. Eur. Ceram Soc. Vol. 21, 2000, pp. 1837-1841
  22. P. Mondal, A. Klein, H. Hahn : Solid State lonics, Vol. 118, 1999, pp. 331-339 https://doi.org/10.1016/S0167-2738(98)00452-4
  23. M. J. Verkerk, B. J. Middelhuis, A. J. Burggraaf : Solid State lonics, Vol. 6, 1982, P. 159 https://doi.org/10.1016/0167-2738(82)90083-2
  24. S. H. Chu, M. A. Seitz : J. Solid state chem. Vol. 23, 1978, P. 297 https://doi.org/10.1016/0022-4596(78)90078-6
  25. N. M. Beekmans, L. Heyne : Electrochim. Acta, Vol. 21, 1976, P. 303 https://doi.org/10.1016/0013-4686(76)80024-2
  26. I. E. Bauerle : J. Phys. Chem. Solids, Vol. 30, 1969, P. 2637
  27. K. A. Khor, X, J, chen : Materials science and Engineering, A335, 2002, pp. 246-252