Expression of mRNA for matrix metalloproteinases and tissue inhibitors of metalloproteinases in human gingival and periodontal ligament fibroblasts treated with lipopolysaccharide from Prevotella intermedia

Prevotella intermedia의 세균내독소가 치은섬유아세포와 치주인대세포에서의 matrix metalloproteinase 및 tissue inhibitor of metalloproteinase의 발현에 미치는 영향

  • Kim, Sung-Jo (Department of Periodontology, College of Dentistry, Pusan National University) ;
  • Choi, Eun-Young (Department of Life Science, College of Natural Science, Silla University) ;
  • Choi, In-Soon (Department of Life Science, College of Natural Science, Silla University) ;
  • Lee, Ju-Youn (Department of Periodontology, College of Dentistry, Pusan National University) ;
  • Choi, Jeom-Il (Department of Periodontology, College of Dentistry, Pusan National University) ;
  • Kim, Chong-Kwan (Department of Periodontology, College of Dentistry, Yonsei University)
  • 김성조 (부산대학교 치과대학 치주과학교실) ;
  • 최은영 (신라대학교 자연대학 생명과학과) ;
  • 최인순 (신라대학교 자연대학 생명과학과) ;
  • 이주연 (부산대학교 치과대학 치주과학교실) ;
  • 최점일 (부산대학교 치과대학 치주과학교실) ;
  • 김종관 (연세대학교 치과대학 치주과학교실)
  • Published : 2005.03.30

Abstract

Matrix metalloproteinases (MMPs) are a family of host-derived proteolytic enzymes and implicated in the remodeling and degradation of extracellular matrix under both physiological and pathological conditions. Connective tissue degradation in periodontal diseases is thought to be due to excessive MMP activities over their specific inhibitors. The effects of lipopolysaccharide (LPS) from Prevotella intermedia, one of the major putative pathogens of periodontitis, on the expression of mRNA for MMPs and tissue inhibitors of metalloproteinases (TIMPs) in human gingival and periodontal ligament fibroblasts were examined by reverse transcriptase-polymerase chain reaction (RT-PCR). The expression of mRNAs encoding MMP-1, -2, -3, -10, and -14 was increased in human gingival fibroblasts treated with p. intermedia LPS, whereas MMP-11 and TIMP-2 mRNA expression was decreased in these cells stimulated with LPS. P. intermedia LPS increased the MMP-1, -2, -10, -11, and -14 mRNA expression and decreased TIMP-1 and -2 mRNA expression in human periodontal ligament fibroblasts. These findings imply that P. intermedia LPS may play an important role in the connective tissue degradation in periodontitis.

Keywords

References

  1. Sorsa T, Ingman T, Suomalainen K et al, Identification of proteases from periodontopathogenic bacteria as activators of latent human neutrophil and fibroblasttype interstitial collagenases, Infect Immun 1992;60:4491-4795
  2. Birkedal-Hansen H, Moore WGI, Bodden MK et al, Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 1993;4:197-250
  3. Woessner, J. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 1991;5:2145-2154
  4. Hoekstra R, Eskens FALM , Verweij J. Matrix metalloproteinase inhibitors: current developments and future perspectives. Oncologist . 2001;6:415-427 https://doi.org/10.1634/theoncologist.6-5-415
  5. McCawley LJ, Matrisian LM. Matrix metalloproteinases: they're not just for matrix anymore! Cuff Opin Cell Biol 2001;13:534-540 https://doi.org/10.1016/S0955-0674(00)00248-9
  6. Stemlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001;17:463-516 https://doi.org/10.1146/annurev.cellbio.17.1.463
  7. Nagase H, Okada Y in Textbook of Rheumatology (Kelley WN, Harris ED Jr, Ruddy S, Sledge CB Eds.), 5th ed, pp 323-340, Sanders, 1996, Philadelphia, PA
  8. Nagase H. Activation mechanisms of matrix metalloproteinases. Biol Chem 1997;378:151-160
  9. Salo T, Makela M, Kylmaniemi M, Autio-Harmainen H, Larjava, H. Expression of matrix metalloproteinase-2 and -9 during early human wound healing. Lab Invest 1994; 70, 176-182
  10. Llano E, Pendas AM, Knauper V et al, Identification and structural and functional characterization of human enamelysin (MMP-20). Biochemistry 1997;36:15101-15108 https://doi.org/10.1021/bi972120y
  11. Pirila E, Ramamurthy N, Maisi P et al. Wound healing in ovariectomiced rats. Effects of chemically modified tetracycline (CMT-8) and estrogen on matrix metalloproteinases -8 and -13 and type I collagen expression. Curr Med Chem 2001;8:281-294 https://doi.org/10.2174/0929867013373552
  12. Reynolds JJ. Collagenases and tissue inhibitors of metalloproteinases: a functional balance in tissue degradation. Oral Dis 1995;2:70-76 https://doi.org/10.1111/j.1601-0825.1996.tb00206.x
  13. Van der Zee E, Everts V, Beertsen W. Cytokines modulate routes of collagen breakdown. J Clin Periodontol 1997;24:297-305 https://doi.org/10.1111/j.1600-051X.1997.tb00761.x
  14. Hanemaaijer R, Sorsa T, Kottinen YT et al, Matrix metalloproteinase-8 is expressed in rheumatoid synovial fibroblasts and endothelial cells. Regulation by tumor necrosis factor-alpha and doxycycline. J Biol Chem 1997;272:31504-31509 https://doi.org/10.1074/jbc.272.50.31504
  15. Tonetti MS, Freiburger K, Lang NP, Bickel M. Detection of interleukin-8 and matrix metalloproteinases transcripts in healthy and diseased gingival biopsies by RNA/PCR. J Periodont Res 1993;28:511-513 https://doi.org/10.1111/j.1600-0765.1993.tb02114.x
  16. Sorsa T, Ding YL, Salo T et al, Effects of tetracy-clines on neutrophil, gingival, and salivary collagenases. A functional and western-blot assessment with special reference to their cellular sources in periodontal diseases. Annal New York Acad Sci 1994;732:112-131 https://doi.org/10.1111/j.1749-6632.1994.tb24729.x
  17. Makela M, Salo T, Uitto VJ, Larjava H. Matrix metalloproteinases (MMP-2 and MMP-9) of the oral cavity: cellular origin and relationship to periodontal status. J Dent Res 1994;73:1397-1406
  18. Aida T, Akeno N, Kawane T, Okamoto H, Horiuchi N. Matrix metalloproteinases-I and -8 and TIMP-1 mRNA levels in normal and diseased human gingivae. EurJ Oral Sci 1996;104:562-569 https://doi.org/10.1111/j.1600-0722.1996.tb00142.x
  19. Ingman T, Tervahartiala T, Ding Y et al, Matrix metallo-proteinases and their inhibitors in gingival crevicular fluid and saliva of periodontitis patients. J Clin Periodontol 1996;23:1127-1132 https://doi.org/10.1111/j.1600-051X.1996.tb01814.x
  20. Korostoff JM, Wang JF, Sarment DP et al, Analysis of in situ protease activity in chronic adult periodontitis patients: Expression of activated MMP-2 and a 40 kDa serine protease. J Periodontol 2000;71:353-360 https://doi.org/10.1902/jop.2000.71.3.353
  21. Tanner ACR, Haffer C, Bratthall GT, Visconti RA, Socransky SS. A study of the bacteria associated with advancing periodontitis in man. J Clin Periodontol 1979;6:278-307 https://doi.org/10.1111/j.1600-051X.1979.tb01931.x
  22. Slots J, Bragd L, Wikstrom M, Dahlen G. The occurrence of Actinobacillus actinomycetem-comitans, Bacteroides gingivalis and Bacteroides intermedius in destructive periodontal disease in adults. J Clin Periodontol 1986;13:570-577 https://doi.org/10.1111/j.1600-051X.1986.tb00849.x
  23. Socransky SS, Haffajee AD. The bacterial etiology of destructive periodontal disease: current concepts. J Periodontol 1992;63:322-331 https://doi.org/10.1902/jop.1992.63.4s.322
  24. Chung CP, Nisengard RJ, Slots J, Genco RJ. Bacterial IgG and IgM antibody titers in acute necrotizing ulcerative gingivitis. J Periodontol 1983;54:557-562 https://doi.org/10.1902/jop.1983.54.9.557
  25. Kornman KS, Loesche WJ. The subgingival microbial flora during pregnancy. J Periodont Res 1980;15:111-122 https://doi.org/10.1111/j.1600-0765.1980.tb00265.x
  26. Morrison DC, Ryan JL. Endotoxins and disease mechanisms. Annu Rev Med 1987;38:417-432 https://doi.org/10.1146/annurev.me.38.020187.002221
  27. Westphal O, Jann K. Bacterial lipopolysaccharides: extraction with phenol-water and further applications of the procedure. In: Whistler RL, ed, Methods in carbohydrate chemistry. New York: Academic Press, 1965: 83-91
  28. Markwell MA, Haas SM, Bieber LL, Tolbert NE. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 1978;87:206-210 https://doi.org/10.1016/0003-2697(78)90586-9
  29. Birkedal-Hansen H. Role of matrix metalloproteinases in human periodontal diseases. J Periodontol 1993;64:474-484
  30. Goldberg GI, Wilhelm SM, Kronberger A et al, Human fibroblast collagenases. Complete primary structure and homology to an oncogene transformation-induced rat protein. J Biol Chem 1986; 261:6600-6605
  31. Devarajan P, Mookhtiar K, Wart HV, Berliner N. Structure and expression of the cDNA encoding human neutrophil collagenase. Blood 1991;77:2731-2738
  32. Sorsa T, Ditto VJ, Suomalainen K, Vauhkonen M, Lindy S. Comparison of interstitial collagenases from human gingiva, sulcular fluid and polymorphonuclear leukocytes. J Periodont Res 1988;23:386-393 https://doi.org/10.1111/j.1600-0765.1988.tb01618.x
  33. Kubota T, Nomura T, Takahashi T, Hara K. Expression of mRNA for matrix metalloproteinases and tissue inhibitors of metalloproteinases in periodontitis-affected human gingival tissue. Arch Oral Biol 1996;41:253-262 https://doi.org/10.1016/0003-9969(95)00126-3
  34. Matrsian LM. The matrix-degrading metalloproteinases. Bioessays 1992;14:455-463 https://doi.org/10.1002/bies.950140705
  35. Ogata Y, Enghild JJ, Nagase H. Matrix metalloproteinase 3 (stromelysin) activates the precursors for human matrix metalloproteinase 9. J Biol Chem 1992;267:3581-3584
  36. McCachren SS. Expression of metalloproteinases and metalloproteinase inhibitor in human arthritic synovium. Arthrit Rheum 1991;34:1085-1093 https://doi.org/10.1002/art.1780340904
  37. Manes S, Mira E, Barbacid MM et al, Identification of insulinlike growth factor-binding protein-1 as a potential physiological substrate for human stromelysin-3. J Biol Chem 1997;272:25706-25712 https://doi.org/10.1074/jbc.272.41.25706
  38. Pei D, Weiss SJ. Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 1995;375:244-247 https://doi.org/10.1038/375244a0
  39. d' Ortho MP, Will H, Atkinson S et al, Membrane-type matrix metalloproteinases 1 and 2 exhibit broad-spectrum proteolytic capacities comparable to many matrix metalloproteinases. Eur J Biochem 1997;250;751-757 https://doi.org/10.1111/j.1432-1033.1997.00751.x
  40. Ohuchi E, Imai K, Fujii Y et al Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem 1997;272:2446-2451 https://doi.org/10.1074/jbc.272.4.2446
  41. Hotary K, Allen E, Punturieri A, Yana I, Weiss SJ. Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J Cell Biol 2000;149:1309-1323 https://doi.org/10.1083/jcb.149.6.1309
  42. Nagase H, Woessner JF. Matrix metalloproteinases J Biol Chem 1999;274:21491-21494 https://doi.org/10.1074/jbc.274.31.21491
  43. Kubota T, Matsuki Y, Nomura T, Hara K. In situ hybridization study on tissue inhibitors of metal-loproteinases (TIMPs) mRNA-expressing cells in human inflamed gingival tissue. J Periodont Res 1997;32:467-472 https://doi.org/10.1111/j.1600-0765.1997.tb00559.x
  44. Stricklin GP, Welgus HG. Human skin fibroblast collagenase inhibitor. Purification and biochemical characterization. J Biol Chem 1983;258:12252-12258
  45. Welgus HG, Jeffrey JJ, Eisen AZ, Roswit WT, Stricklin GP. Human skin fibroblast collagenase: interaction with substrate and inhibitor. Coll Relat Res 1985;5:167-179 https://doi.org/10.1016/S0174-173X(85)80038-8
  46. Nomura T, Takahashi T, Hara K. Expression of TIMP-1,TIMP-2 and collagenase mRNA in periodontitisaffected human gingival tissue. J Periodont Res 1993;28:354-362 https://doi.org/10.1111/j.1600-0765.1993.tb01079.x
  47. Nomura T, Ishii A, Oishi Y, Kohma H, Hara K. Tissue inhibitors of metalloproteinases level and collagenase activity in gingival crevicular fluid: the relevance to periodontal diseases. Oral Dis 1998;4:231-240 https://doi.org/10.1111/j.1601-0825.1998.tb00286.x