Effect of Phellinus Extracts on Sprouting in Porcine Pulmonary Artery Endothelial Cells

혈관내피세포의 발아에 미치는 상황버섯 추출물의 효과

  • Oh, In-Suk (Division of Biological Sciences, Research Center of Bioactive Materials, Chonbuk National University) ;
  • Kim, Hwan-Gyu (Division of Biological Sciences, Research Center of Bioactive Materials, Chonbuk National University)
  • 오인숙 (전북대학교 자연과학대학 생물과학부, 생리활성물질연구소) ;
  • 김환규 (전북대학교 자연과학대학 생물과학부, 생리활성물질연구소)
  • Published : 2006.08.30

Abstract

One of the steps in angiogenesis is the degradation of the underlying basement membrane via proteases. Endothelial cells release proteinases to degrade the extracellular matrix for their sprouting in vivo. In this study, we examined the effect of water extracts of Phellinus linteusis(Phellinus extracts) and combination of Phellinus extracts and fibroblast growth factor(FGF-2) on cultured porcine pulmonary artery endothelial cells(PPAECs). Phellinus extracts induced sprouting of PPAECs, which was inhibited by MMPs and plasmin inhibitors, and induced the secretion of matrix metalloproteinase-3(MMP-3) and plasmin. At high concentration of Phellinus extracts($200{\sim}400{\mu}g/mL$), the active MMP-2 secretion was induced. It is therefore, suggested that Phellinus extracts induces the sprouting of cultured endothelial cells by means of increased active MMP-2 and plasmin secretion. Also, combination with Phellinus extracts and FGF-2 produced an enhanced effect on sprouting and secretion of active MMP-2, and MMP-3 and plasmin from PPAECs.

본 연구에서는 상황버섯의 수용성 추출물을 이용하여 PPAECs 세포의 발아에 미치는 효과 및 그 작용기작을 알아보고자 하였다. 상황버섯 추출물을 $10{\sim}50{\mu}g/mL$ 농도로 처리하면 PPAECs 세포의 발아가 약 $38{\sim}58%$ 억제되었으나, $200{\sim}400{\mu}g/mL$ 처리군에서는 약 $1.42{\sim}1.47$배의 발아 증가를 유도하였다. PPAECs 세포에 상황버섯 추출물을 처리한 결과, MMP-2는 상황버섯 추출물 농도 $50{\mu}g/mL$까지는 약 30% 정도 분비가 억제되다가 $100{\mu}g/mL$에서부터 증가하기 시작하여 $400{\mu}g/mL$에서는 약 1.7배의 MMP-2 분비 증가 효과를 나타냈다. 이에 비해 MMP-9의 분비는 농도-의존적으로 감소되었으며, MMP-3는 $50{\sim}400{\mu}g/mL$에서 약 $1.5{\sim}1.7$배의 분비 증가 고과를 보였다. 또한 $100{\sim}200{\mu}g/mL$ 농도의 상황버섯 추출물에서 피브린 젤의 용해 및 MMP-2의 활성화에 관여하는 플라스민의 분비증가가 약 2.4배 유도되었다. 한편 상황버섯 추출물 처리시 고농도($100{\sim}400{\mu}g/mL$)에서 PPAECs 세포의 발아가 촉진되었으며, 이러한 효과는 MMPs 및 플라스민 억제제에 의해 약 $40{\sim}44%$ 억제되어 피브린 젤에서 확인된 상황버섯 추출물에 의한 발아 증가는 MMPs 및 플라스민의 분비증가에 의한 것이라 사료된다.

Keywords

References

  1. Risau, W. (1997), Mechanisms of angiogenesis, Nature 386, 671-674 https://doi.org/10.1038/386671a0
  2. Folkman, J. and Y. Shing (1992), Angiogenesis, J. Biol. Chem. 267, 10931-10934
  3. Millauer, B., S. Wizigmann-Voos, H. Schnurch, R. Martinez, N. P. Moller, W. Risau, and A. Ullrich (1993), High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis, Cell 72, 835-846 https://doi.org/10.1016/0092-8674(93)90573-9
  4. Pepper, M. S. (2001), Extracellular proteolysis and angiogenesis, Thromb. Haemost. 86, 346-355 https://doi.org/10.1055/s-0037-1616232
  5. Zhou, Z., S. S. Apte, R. Soininen, R. Cao, G. Y. Baaklini, R. W. Rauser, J. Wang, Y. Cao, and K. Tryggvason (2000), Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I, Proc. Natl. Acad. Sci. 97, 4052-4057
  6. Coussens, L. M. and Z. Werb (1996), Matrix metalloproteinases and the development of cancer, Chem. Biol. 3, 895-904 https://doi.org/10.1016/S1074-5521(96)90178-7
  7. Nelson, A. R., B. Fingleton, M. L. Rothenberg, and L. M. Matrisian (2000), Matrix metalloproteinases: biologic activity and clinical implications, J. Clin. Oncol. 18, 1135-1149 https://doi.org/10.1200/JCO.2000.18.5.1135
  8. Anita, E. Y., A. N. Murphy, and W. G. Stetler-Stevenson (1998), 72 kDa gelatinase (gelatinase A) : structure, activation, regulation, and substrate specificity, In Matrix Metalloproteinase, W. C. Parks and R. F. Mecham, Eds., pp. 85-113, Academic Press. London. UK
  9. Frederick, J. and J. F. Woessner Jr. (1998), The matrix metallo-proteinase family, In Matrix Metalloproteinase, W. C. Parks and R. F. Mecham, Eds., pp. 1-14, Academic Press. London. UK
  10. Sounni, N. E. and A. Noel (2005), Membrane type-matrix metalloproteinases and tumor progression, Biochimie 87, 329-342 https://doi.org/10.1016/j.biochi.2004.07.012
  11. Kim, H. G. and G. Y. Koh (2000), Lipopolysaccharide activates matrix metalloproteinase-2 in endothelial cells through an NF-kB-dependent pathway, Biochem. Biophys. Res. Commu. 269, 401-405 https://doi.org/10.1006/bbrc.2000.2308
  12. Nagase, H. (1997), Activation mechanisms of matrix metalloproteinases, J. Biol. Chem. 378, 151-160
  13. Kim, H. M., S. B. Han, G. T. Oh, Y. H. Kim, D. H. Hong, N. D. Hong, and I. D. Yoo (1996), Stimulation of humoral and cell mediated immunity by polysaccharide from mushroom Phellinus linteus, International J. Immunopharmacol. 18, 295-303 https://doi.org/10.1016/0192-0561(96)00028-8
  14. Lee, H. J., H. J. Lee, E. S. Lim, K. S. Ahn, B. S. Shim, H. M. Kim, S. J. Gong, D. K. Kim, and S. H. Kim (2005), Cambodian Phellinus linteus inhibits experimental metastasis of melanoma cells in mice via regulation of urokinase type plasminogen activator, Biol. Pharmaceu. Bull. 28, 27-31 https://doi.org/10.1248/bpb.28.27
  15. Shon, Y. H. and K. S. Nam (2001), Antimutagenicity and induction of anticancinogenic phase II enzymes by basidiomycetes, J. Ethnopharmacol. 77, 103-109 https://doi.org/10.1016/S0378-8741(01)00276-8
  16. Song, Y. S., S. H. Kim, J. H. Sa, C. Jin, C. J. Lim, and E. H. Park (2003), Anti-angiogenic, antioxidant and xanthine oxidase inhibition activities of the mushroom Phellinus linteus, J. Ethnopharmacol. 88, 113-116 https://doi.org/10.1016/S0378-8741(03)00178-8
  17. Baird, A. (1994), Fibroblast growth factors: activities and significance of non-neurotrophin neurotrophic growth factors, Curr. Opin. Neurobiol. 4, 78-86 https://doi.org/10.1016/0959-4388(94)90035-3
  18. Kinoshita, M. and K. Shimokado (1999), Autocrine FGF-2 is responsible for the cell density-dependent susceptibility to apoptosis of HUVEC : A role of a calpain inhibitor-sensitive mechanism, Arterioscler. Thromb. Vasc. Biol. 19, 2323-2329 https://doi.org/10.1161/01.ATV.19.10.2323
  19. Chae, J. K., L. Kim, S. T, Lim, M. J. Chung, W. H. Kim, H. G. Kim, and G. Y. Koh (2000), Coadministration of angiopoietin-1 and vascular endothelial growth factor enhances collateral vascularization, Arterioscler. Thromb. Vasc. Biol. 20, 2573-2578 https://doi.org/10.1161/01.ATV.20.12.2573
  20. Ferrara, N. and K. Alitalo (1999), Clinical applications of angiogenic growth factors and their inhibitors, Nat. Med. 5, 1359-1364 https://doi.org/10.1038/70928
  21. Kim, I., S. O. Moon, K. N. Koh, H. Kim, C. S. Uhm, H. J. Kwak, N. G. Kim, and G. Y. Koh (1999), Molecular cloning, expression, and characterization of angiopoietin-related protein induces endothelial cell sprouting, J. Biol. Chem. 274, 26523-26528 https://doi.org/10.1074/jbc.274.37.26523
  22. Oh, I. S., J. W. Han, and H. G. Kim (2005), Water extracts of Aralia elata root bark enhances migration and matrix metalloproteinases secretion in porcine coronary artery endothelial cells, Biotechnol. Bioprocess Eng. 10, 372-377 https://doi.org/10.1007/BF02931858
  23. Klagsbrun, M. and P. A. D'Amore (1991), Regulators of angiogenesis, Annu. Rev. physiol. 53, 217-239 https://doi.org/10.1146/annurev.ph.53.030191.001245
  24. Grant, D. S. and H. K. Kleinman (1997), Regulation of capillary formation by laminin and other components of the extracellular matrix, EXS 79, 317-333
  25. Benbow, U., G. Buttice, H. Nagase, and M. Kurkinen (1996), Characterization of the 46-kDa intermediates of matrix metalloproteinase 3 (stromelysin 1) obtained by site-directed mutation of phenylalanine 83, J. Biol. Chem. 271, 10715-10722 https://doi.org/10.1074/jbc.271.18.10715
  26. Nguyen, Q., F. Willenbrock, M. I. Cockett, M. O'Shea, A. J. Docherty, and G. Murphy (1994), Different domain interactions are involved in the binding of tissue inhibitors of metalloproteinases to stromelysin-1 and gelatinase A, Biochemistry 33, 2089-2095 https://doi.org/10.1021/bi00174a015
  27. Okumura, Y., H. Sato, M. Seiki, and H. Kido (1997), Proteolytic activation of the precursor of membrane type 1 matrix metalloproteinase by human plasmin. A possible cell surface activator, FEBS. Lett. 402, 181-184 https://doi.org/10.1016/S0014-5793(96)01523-2
  28. Davis, G. E. and D. R. Senger (2005), Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization, Circ. Res. 97, 1093-1107 https://doi.org/10.1161/01.RES.0000191547.64391.e3