A Study on the Characteristics and Preparation of the Cation Exchange Membrane Using Various Type of Polystyrene

폴리스티렌을 이용한 전기투석용 양이온교환 막의 제조 및 그 특성에 관한 연구

  • Kim, Hi Youl (Department of Chemical Engineering, Changwon National University) ;
  • Kim, Jong Hwa (Department of Chemical Engineering, Changwon National University) ;
  • Park, Keun Ho (Department of Chemical Engineering, Changwon National University) ;
  • Song, Ju Yeong (Department of Chemical Engineering, Changwon National University)
  • 김희열 (창원대학교 화공시스템공학과) ;
  • 김종화 (창원대학교 화공시스템공학과) ;
  • 박근호 (창원대학교 화공시스템공학과) ;
  • 송주영 (창원대학교 화공시스템공학과)
  • Received : 2006.02.14
  • Accepted : 2006.07.20
  • Published : 2006.08.31

Abstract

We prepared porous cation exchange membrane using polystyrene such as, EPS (expanded polystyrene), SAN (styrene acrylonitrile copolymer) and HIPS (high impact polystyrene). These three kind of polystyrene were sulfonated by acetyl sulfate to make sulfonated porous cation exchange membrane such as, SEPS (sulfonated expanded polystyrene), SSAN (sulfonated styrene acrylonitrile copolymer)and SHIPS (sulfonated high impact polystyrene). SEM was employed to validate porous structure of membrane, and IR spectroscopy was used to validate sulfonation rate of ion exchange membrane. As a results, ion exchange capacity was increased with an amount of sulfuric acid in reactants and cation exchange membrane showed the selectivity to a cation and showed the exclusivity to an anion.

폴리스티렌을 acetyl sulfate 시약을 사용하여 술폰화시킨 후 다공성 양이온교환 막으로 제조하였다. 제조된 막의 특성을 분석한 결과 다공성의 형태를 가졌음을 확인할 수 있었고, IR 분석결과 술폰산기의 도입을 확인할 수 있었다. 전체적으로 반응물 중 황산의 양이 증가할수록 이온교환능력이 증가하는 경향을 확인할 수 있었고, 전기투석 공정에 적용가능성을 판단한 결과 양이온에 대한 선택성과 음이온에 대한 배제성을 간접적으로 확인할 수 있었다.

Keywords

References

  1. 2000 Status of National Waste Material Generation and Treatment. The Ministry of Environment(2001)
  2. Lee, J. K., 'Chemical Recycling Technologies for Used Plastics,' Prospective of Industrial Chemistry, 3(2), 16-22(2000)
  3. Shin, D. H., Yoon, W. L. and Choi, I. S., 'Chemical Recycling of Plastic Waste and Pyrolysis Technologies for Oil Production,' Polymer Science and Technology, 13(3), 321-331(2002)
  4. Park, C. R., Kim, Y. C. and Park, N. C., 'Catalytic Recycling of Waste Polymer-Recycling on the Glycolysis of Waste Polyurethane Foam Automative Seats,' J. Journal of Industrial and Engineering Chemistry, 11(1), 105-112(2000)
  5. 2003 Status of National Waste Material Generation and Treatment. The Ministry of Environment(2004)
  6. Sulkowsti, W. W., Agnieszka, W., Barbara, S., Wioletta, M. B. and Anna, S., 'Preparation and Properties of Flocculants Derived from Polystyrene Waste,' Polymer Degradation and Stability, 90, 272-280(2005) https://doi.org/10.1016/j.polymdegradstab.2005.03.021
  7. Kim, H. J., Kang, Y. S. and Kim, J. J., 'Polymeric Microporous Membranes,' Polymer Science and Technology, 2(2), 81-87(1991) https://doi.org/10.1002/pat.1991.220020205
  8. Cardenas, G., Carla, M. and Hernan, C., 'Thermal Properties and TGA-FTIR Studies of Polyacrylic Acid and Polymethacrylic Acid Doped with Metal Clusters,' European Polymer Journal, 36, 1091-1099(2000) https://doi.org/10.1016/S0014-3057(99)00187-1
  9. Shim, W., 'Synthesis and the Spectroscopic Investigation of Metal Containing Polymeric Materials,' Ph D. Dissertation, Brown University(1985)
  10. Jung, B. S., Kim, B. K. and Yang, J. M., 'Transport of Methanol and Protons Through Partially Sulfonated Polymer Blend Membranes for Direct Methanol Fuel Cell,' Journal of Membrane Science, 245(1-2), 61-69(2004) https://doi.org/10.1016/j.memsci.2004.06.059
  11. Smith, B., Sridhar, S. and Khan, A. A., 'Synthesis and Characterization of Proton Conducting Polymer Membranes for Fuel Cells,' Journal of Membrane Science, 225(1-2), 63-76(2003) https://doi.org/10.1016/S0376-7388(02)00598-7