Synthesis and Characterization of Biodegradable MethoxyPoly(ethylene glycol)-Poly$(\varepsilon-caprolactone-co-L-lactide)$ Block Copolymers

메톡시폴리(에틸렌 글리콜)-폴리(카프로락톤-co-L-락타이드) 공중합체의 합성 및 특성 분석

  • Hyun Hoon (Department of Advanced Organic Materials Engineering, Chonbuk National University) ;
  • Cho Young Ho (Department of Advanced Organic Materials Engineering, Chonbuk National University) ;
  • Jeong Sung Chan (Department of Polymer Engineering, Pukyung National University) ;
  • Lee Bong (Department of Polymer Engineering, Pukyung National University) ;
  • Kim Moon Suk (Nanobiomaterials Laboratories, Korea Research Institute of Chemical Technology) ;
  • Khang Gilson (Department of Advanced Organic Materials Engineering, Chonbuk National University) ;
  • Lee Hai Bang (Nanobiomaterials Laboratories, Korea Research Institute of Chemical Technology)
  • 현훈 (전북대학교 유기신물질공학과) ;
  • 조영호 (전북대학교 유기신물질공학과) ;
  • 정성찬 (부경대학교 고분자공학과) ;
  • 이봉 (부경대학교 고분자공학과) ;
  • 김문석 (한국화학연구원 나노생체재료연구팀) ;
  • 강길선 (전북대학교 유기신물질공학과) ;
  • 이해방 (한국화학연구원 나노생체재료연구팀)
  • Published : 2006.01.01

Abstract

A series of methoxypoly(ethylene glycol) $(MPEG)-poly(\varepsilon-co-L-lactide)$ (PCLA) diblock copolymers were synthesized by ring-opening polymerization of a mixture of $\varepsilon-caprolactone$ and L-lactide with different ratios in the presence of $Sn(Oct)_2$. The characterization of MPEG-PCLA diblock copolymers were examined by $^1H-NMR$, GPC, DSC, and XRD. Kinetic study on ring-opening polymerization of monomer mixtures was carried out in various conditions such as a variation with polymerization time, amount of catalyst, and temperature. The highest conversion obtained in 1.2 ratic of initiator venn catalyst at $110\;^{\circ}C$. The biodegradable characterization of MPEG-PCLA diblock copolymers in aqueous solution was carried out by using GPC for $1\~14$ weeks. The biodegradability of MPEG-PCLA diblock copolymers increased as the L-lactide content of diblock copolymers increased. In conclusion, we confirmed the dependence of polymerization rate according to various conditions. In addition, we can control the biodegradability of MPEC-PCLA diblock copolymers by changing the ratio of PCL and PLA block segment.

메톡시폴리에틸렌글리콜(MPEG)과 카프로락톤(CL)과 L-락타이드(LA)로 구성된 MPEG-PCLA 블록공중합체의 단량체를 다양한 비율로 $Sn(Oct)_2$의 존재 하에서 개환중합을 통해 합성하였다. MPEG-PCLA 블록공중합체의 특성은 $^1H-NMR$, GPC, DSC 그리고 XRD를 이용하여 결정하였다. 동역학적 변화를 측정하기 위하여 $Sn(Oct)_2$의 존재 하에서 MPEG-PCLA 블록공중합체의 중합 시 중합시간, 온도, 첨가하는 촉매의 양을 달리하면서 중합을 실시하였다. 그 결과 $110\;^{\circ}C$의 중합온도와 첨가하는 촉매의 양은 개시제 대비 1.2배의 경우에서 가장 높은 중합률을 보였다. 또한 합성된 블록공중합체의 수용액상에서의 시간에 따른 생분해 거동은 GPC를 이용한 분자량 분포의 비교를 통해 측정하였다. 합성된 블록공중합체의 생분해 거동을 측정한 결과 MPEG-PCLA 블록공중합체의 L-락타이드 함량이 증가할수록 생분해성도 증가하는 것을 확인하였다. 본 연구를 통해 MPEG-PCLA 블록공중합체의 $Sn(Oct)_2$의 존재 하에서 개환중합을 실시함에 있어 다양한 중합조건에 따른 중합속도를 확인하였으며 MPEG-PCLA 블록공중합체는 PCLA 블록의 PCL 대비 PLA의 함량 비율에 따라 생분해 기간을 조절할 수 있는 가능성을 확인하였다.

Keywords

References

  1. A. J. Domb, J. Kost, and D. M. Wiseman, Handbook of Biodegradable Polymers, Harwood Academic Publishers, Amsterdam, Netherland, 1997
  2. A. Atala, D. Mooney, J. P. Vacanti, and R. Langer, Synthetic Biodegradable Polymer Scaffolds, Birkhauser Boston, USA, 1997
  3. A. Steinbuchel, and Y. Doi, Biopolytmers Polyesters III Applications and Commercial Products, WILEY-VCH Verlag GmbH, Weinheim, FRG,2002
  4. M. Igartua, R. M. Hernandez, A. Esquisabel, A. R. Gascon, M. B. Calvo, and J. L. Pedraz, J. Microencapsulation, 14, 349 (1997) https://doi.org/10.3109/02652049709051138
  5. J. Panyam and V. Labhasetwar, Adv. Drug. Deliv. Rev., 55, 329 (2002)
  6. A. G. Coombes, M. K. Yeh, E. C. Lavelle, and S. S. Davis, J. Control. Rel, 52, 311 (1998) https://doi.org/10.1016/S0168-3659(98)00006-6
  7. M. Penco, S. Marchioni, P. Ferruti, S. D'antone, and P. Deghenghi, Biomaterials, 17, 1583 (1996) https://doi.org/10.1016/0142-9612(95)00323-1
  8. K. M. Huh and Y. H. Bae, Polymer, 40, 6147 (1999) https://doi.org/10.1016/S0032-3861(98)00822-2
  9. H. Qian, J. Bei, and S. Wang, Polym. Degrad. Stab., 68, 423 (2000) https://doi.org/10.1016/S0141-3910(00)00031-8
  10. J. K. Kim, D. Park, M. Lee, and K. J. Ihn, Polymer, 42, 7429 (2001) https://doi.org/10.1016/S0032-3861(01)00217-8
  11. H. Tsuji and K. Ikarashi, Biomaterials, 25, 5449 (2004) https://doi.org/10.1016/j.biomaterials.2003.12.053
  12. G. S. Chae, J. S. Lee, J. K. Jeong, S. H. Cho, H. B. Lee, and G. Khang, Polymer(Korea), 28, 335 (2004)
  13. G. Khang, J. H. Lee, J. W. Lee, J. C. Cho, and H. B. Lee, Korea Polym. J., 8, 80 (2000)
  14. K. S. Seo, S. K. Jeon, M. S. Kim, S. H. Cho, H. B. Lee, and G. Khang, Polymer(Korea), 28, 232 (2004)
  15. H. Suh, B. Jeong, R. Rathi, and S. W. Kim, J. Biomed. Mater. Res., 42, 331 (1998) https://doi.org/10.1002/(SICI)1097-4636(199811)42:2<331::AID-JBM19>3.0.CO;2-L
  16. B. Jeong, D. S. Lee, J. Shon, Y. H. Bae, and S. W. Kim, J. Polym. Sci; Part A:Polym. Chem., 37, 751 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990315)37:6<751::AID-POLA10>3.0.CO;2-0
  17. B. Jeong, Y. H. Bae, and S. W. Kim, Macromolecules, 32, 7064 (1999) https://doi.org/10.1021/ma9908999
  18. S. W Choi, S. Y. Choi, B. Jeong, S. W. Kim, and D. S. Lee, J. Polym. Sci; Part A: Polym. Chem., 37, 2207 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990701)37:13<2207::AID-POLA35>3.0.CO;2-0
  19. M. H. Kang and Y. H. Bae, Polymer, 40, 6147 (1999) https://doi.org/10.1016/S0032-3861(98)00822-2
  20. Y. X. Li, V. Christian, and T. Kissel, J. Control. Rel., 32, 121 (1994) https://doi.org/10.1016/0168-3659(94)90050-7
  21. Y. K. Sung and S. W. Kim, Korea Polym. J., 8, 199 (2000)
  22. J. H. Lee, J. Kopecek, and J. D. Andrade, J. Biomed. Mater. Res., 23, 351 (1989) https://doi.org/10.1002/jbm.820230306
  23. K. S. Seo, J. S. Park, M. S. Kim, S. H. Cho, H. B. Lee, and G. Khang, Polymer(Korea), 28, 211 (2004)
  24. K. S. Seo, J. S. Park, M. S. Kim, S. H. Cho, H. B. Lee, and G. Khang, Polymer(Korea), 28, 344 (2004)
  25. B. Bogdanov, A. Vidts, A. Van Den Buicke, R. Verbeeck, and E. Schacht, Polymer, 39, 1631 (1998) https://doi.org/10.1016/S0032-3861(97)00444-8
  26. M. Deng, X. Chen, L. Piao, X. Zhang, Z. Dai, and X. Jing, J. Polym. Sci.; Part A: Polym. Chem., 42, 950, (2004) https://doi.org/10.1002/pola.11052
  27. Z. Zhu, C. Xiong, L. Zhang, M. Yuan, and X. Deng, Eur. Polym. J., 35, 1821, (1999) https://doi.org/10.1016/S0014-3057(98)00265-1
  28. H. S. Choi, S. W. Kim, D. I. Yun, G. Khang, J. M. Rhee, Y. S. Kim, and H. B. Lee, Polymer(Korea), 25, 334 (2001)
  29. H. S. Seong, D. S. Moon, G. Khang, and H. B. Lee, Macromol. Chem. Symp., 4, 95 (2001)
  30. H. S. Choi, G. Khang, H. Shin, J. M. Rhee, and H. B. Lee, Int. J. Pharm., 234, 195 (2002) https://doi.org/10.1016/S0378-5173(01)00968-1
  31. T. K. An, H. J. Kang, D. S. Moon, J. S. Lee, H. S. Seong, J. K. Jeong, G. Khang, and H. B. Lee, Polymer(Korea), 26, 670 (2002)
  32. J. Y. Yoo, S. W. Kim, G. Khang, H. S. Seong, J. K. Jeong, H. J. Kim, J. S. Lee, and H. B. Lee, Polymer(Korea), 26, 680 (2002)
  33. V. Kumaran, and G. H. Fredrickson, Physica A: Statist Theo. Physics, 204, 378 (1994) https://doi.org/10.1016/0378-4371(94)90439-1
  34. M. S. Kim, K. S. Seo, G. Khang, and H. B. Lee, Macromol. Rapid Commun., 26, 643 (2005) https://doi.org/10.1002/marc.200400650
  35. A. Kowalski, A. Duda, and S. Penczek, Macromolecules, 33, 7359 (2000) https://doi.org/10.1021/ma000125o
  36. H. R. Kricheldorf, C. Boettcher, and K-U. Tonnes, Polymer, 33, 2817 (1992) https://doi.org/10.1016/0032-3861(92)90459-A
  37. H. Tsuji, T. Ono, T. Saeki, H. Daimon, and K. Fujie, Polym. Degrad. Stab., 89, 336 (2005) https://doi.org/10.1016/j.polymdegradstab.2005.01.018
  38. E. Pamula, P. Dobrzynski, M. Bero, and C. Paluszkiewicz, J. Molecular Structure, 744, 557 (2005) https://doi.org/10.1016/j.molstruc.2004.11.016
  39. M. A. Paul, C. Delcourt, M. Alexandre, F. Monteverde, and Ph. Dubois, Polym. Degrad. Stab., 87, 535 (2005) https://doi.org/10.1016/j.polymdegradstab.2004.10.011
  40. S. I. Jeong, B. S. Kim, S. W. Kang, J. H. Kwon, Y. M. Lee, S. H. Kim, and Y. H. Kim, Biomaterials, 25, 5939 (2004) https://doi.org/10.1016/j.biomaterials.2004.01.057
  41. N. Teramoto, H. Kogure, Y. Kimura, and M. Shibata, Polymer, 45, 7927 (2004) https://doi.org/10.1016/j.polymer.2004.08.072
  42. G. Kister, G. Cassanas, M. Bergounhon, D. Hoarau, and M. Vert, Polymer, 41, 925 (2000) https://doi.org/10.1016/S0032-3861(99)00223-2