Characterization of the Dependence of the Device on the Channel Stress for Nano-scale CMOSFETs

Nano CMOSFET에서 Channel Stress가 소자에 미치는 영향 분석

  • Han In-Shik (Dept. of Electronics Engineering, Chungnam National University) ;
  • Ji Hee-Hwan (Dept. of Electronics Engineering, Chungnam National University) ;
  • Kim Kyung-Min (Dept. of Electronics Engineering, Chungnam National University) ;
  • Joo Han-Soo (Dept. of Electronics Engineering, Chungnam National University) ;
  • Park Sung-Hyung (Dept. of Electronics Engineering, Chungnam National University) ;
  • Kim Young-Goo (Dept. of Electronics Engineering, Chungnam National University) ;
  • Wang Jin-Suk (MagnaChip semiconductor. Inc.) ;
  • Lee Hi-Deok (MagnaChip semiconductor. Inc.)
  • Published : 2006.03.01

Abstract

In this paper, reliability (HCI, NBTI) and device performance of nano-scale CMOSFETs with different channel stress were investigated. It was shown that NMOS and PMOS performances were improved by tensile and compressive stress, respectively, as well known. It is shown that improved device performance is attributed to the increased mobility of electrons or holes in the channel region. However, reliability characteristics showed different dependence on the channel stress. Both of NMOS and PMOS showed improved hot carrier lifetime for compressive channel stress. NBTI of PMOS also showed improvement for compressive stress. It is shown that $N_{it}$ generation at the interface of $Si/SiO_2$ has a great effect on the reliability. It is also shown that generation of positive fixed charge has an effect in the NBTI. Therefore, reliability as well as device performance should be considered in developing strained-silicon MOSFET.

본 논문에서는 채널 stress에 따른 Nano-scale CMOSFET의 소자 및 신뢰성 (HCI, NBTI)특성을 분석하였다. 잘 알려져 있듯이 NMOS는 tensile, PMOS는 compressive stress가 인가된 경우에 소자의 특성이 개선되었으며, 이는 전자와 정공의 이동도 증가에 의한 것임을 확인하였다. 그러나 신뢰성인 경우에는 소자 특성과는 다른 특성을 나타냈는데, NMOS와 PMOS 모두 tensile stress가 인가된 경우에 hot carrier 특성이 더 열화 되었으며, PMOS의 PBTI 특성도 tensile에서 더 열화 되었음을 확인하였다. 신뢰성을 분석한 결과, 채널의 tensile stress로 인하여 $Si/SiO_2$ 계면에서 interface trap charge의 생성과 산화막 내 positive fixed charge의 생성에 많은 영향을 끼침을 알 수 있었다. 그러므로 나노급 CMOSFET에 적용되는 strained-silicon MOSFET의 개발을 위해서는 소자의 성능 뿐 만 아니라 신뢰성 또한 고려되어야 한다.

Keywords

References

  1. A. Hamada, T. Furusawa, N. Saito and E. Takeda, 'A new aspect of mechanical stress effects in scaled MOS devices', IEEE Ttrans. Electron Devices, vol.38, pp. 895-900, Apr. 1991 https://doi.org/10.1109/16.75220
  2. F. Ootsuka, S. Wakahara, K Ichinose, A. Honzawa, S. Wada, H. Sato, T. Ando, H. Ohta, K Watanabe and T. Onai, 'A highly dense, high-performance 130 nm node CMOS technology for large scale system-on- a-chip applications', IEDM Technical Digest, pp. 575-578, Dec. 2000 https://doi.org/10.1109/IEDM.2000.904385
  3. A. Shimizu, K. Hachimine, N. Ohki, H. Ohta, M. Koguchi, Y. Nonaka, H. Sato and F. Ootsuka, 'Local mechanical-stress control (LMC): a new technique for CMOS-performance enhancement', IEDM Technical Digest, pp.433-436, Dec. 2001 https://doi.org/10.1109/IEDM.2001.979529
  4. S. Ito, H. Namba, K Yamaguchi, T. Hirata, K Ando, S. Koyama, S. Kuroki, N. Ikezawa, T. Suzuki, T. Saitoh and T. Horiuchi, 'Mechanical stress effect of etch-stop nitride and its impact on deep submicron transistor design', IEDM Technical Digest, pp.247-250, Dec. 2000 https://doi.org/10.1109/IEDM.2000.904303
  5. G. Scott, J. Lutze, M. Rubin, F. Nouri and M. Manley, 'NMOS drive current reduction caused by transistor layout and trench isolation induced stress', IEDM Technical Digest, pp.827-830, Dec. 1999 https://doi.org/10.1109/IEDM.1999.824277
  6. S. H. Park, H. H. Ji, Y. G. Kim, H. D. Lee, S. H. Beak, B. S. Song, H. K Bae, J. H. Jun, H. S. Lee, Y. S. Kang, D. B. Kim and J. W. Park, 'Improvement of analog performance for nano-scale CMOSFET modifying mechanical film stress of ILD layer', The 11th Korea Conference on Semiconductors, pp. 209-210, Feb. 2004
  7. H. H. Ji, S. H. Park, Y. G. Kim, J. S. Wang, H. D. Lee, S. H. Beak, B. S. Song, H. K Bae, J. H. Jun, H. S Lee, Y. S. Kang, D. B. Kim and J. W. Park, 'Dependence of Analog and Digital Performances on Mechanical Film Stress of ILD Layer in Nano-Scale CMOSFETs', Jpn. J. Appl, Phys., vol. 44, pp. 2171-2175, Apr. 2005 https://doi.org/10.1143/JJAP.44.2171
  8. G. Dorda, 'Piezoresistance in quantized conduction bands in silicon inversion layers', J. Appl, Phys., vol. 42, pp. 2053-2060, 1971 https://doi.org/10.1063/1.1660486
  9. J. M. M, de. Nijs, K. G. Druijf, V. V. Afanas'ev, E. van der Drift, and P. Balk, 'Hydrogen induced donor-type Si/Si$O_2$ interface states', Appl. Phys. Lett., vol. 65, pp. 2428-2430, Nov. 1994, 48, pp. 2004-2014, 1977 https://doi.org/10.1063/1.112696
  10. C. E. Balt, E.H. Nicolloan and E.H. Poindexter, 'Mechanism of negative bias temperature instability' J. Appl. Phys., vol. 94, pp. 1712-1720, July. 1991 https://doi.org/10.1063/1.347217