DOI QR코드

DOI QR Code

Fracture Characteristics of NiCr/ZrO2 Functionally Graded Material by Gas Burner Thermal Shock

가스버너 열충격에 의한 NiCr/ZrO2계 경사기능재의 열적 파괴특성

  • Song, Jun-Hee (The Research Center of Industrial Technology, Engineering Research Institute, Chonbuk National University)
  • 송준희 (전북대학교 공학연구원 공업기술연구센터)
  • Published : 2006.04.01

Abstract

Joining Yittria Stabilized Zirconia (YSZ) to NiCr metal was fabricated using YSZ/NiCr Functionally Graded Materials (FGM) Interlayer by hot pressing process. Microscopic observations demonstrate that the composition and microstructure of YSZ/NiCr FGM distribute gradually in stepwise way, eliminating the macroscopic ceramic/metal interface such as that in traditional ceramic/metal joint. The thermal characteristics of this YSZ/FGM/NiCr joint were studied by thermal shock testing and therml barrier testing. Thermal shock test was conducted by gas burner rig. Acoustic Emission (AE) monitoring was performed to analyze the microfracture behavior during the thermal shock test. It could be confirmed that FGM was the excellent performance of thermal shock/barrier resistance at above $1000^{\circ}C$.

Keywords

References

  1. M. Niino, T. Hirai, and R. Watanabe, 'Functionally Gradient Materials as Thermal Barrier for Space Plane,' J. Jpn. Soc. Comp. Mater., 13 257-64 (1987) https://doi.org/10.6089/jscm.13.257
  2. T. Hirai, 'Functionally Gradient Materials and Nano-Composites,' Ceramic Transactions, 34 11-20 (1993)
  3. A. Carpinteri and N. Pugno, 'Thermal Loading in Multilayered and/or Functionally Graded Materials: Residual Stress Field, Delamination, Fatigue, and Related Size Effects,' International Journal of Solids and Structures, 43 828-41 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.009
  4. W. Szymczyk, 'Numerical Simulation of Composite Surface Coating as a Functionally Graded Material,' Mater. Sci. and Eng. A, 412 61-5 (2005) https://doi.org/10.1016/j.msea.2005.08.014
  5. M. T. Tilbrook, R. J. Moon, and M. Hoffman, 'Finite Ele- ment Simulations of Crack Propagation in Functionally Graded Materials under Flexural Loading,' Engineering Fracture Mechanics, 72 2444-67 (2005) https://doi.org/10.1016/j.engfracmech.2005.04.001
  6. B. N. Rao and S. Rahman, 'A Continuum Shape Sensitivity Method for Fracture Analysis of Orthotropic Functionally Graded Materials,' Mech. of Mater., 37 1007-25 (2005) https://doi.org/10.1016/j.mechmat.2005.01.001
  7. K. Tohgo, T. Suzuki, and H. Araki, 'Evaluation of R-Curve Behavior of Ceramic/Metal Functionally Graded Materials by Stable Crack Growth,' Engineering Fracture Mechanics, 72 2359-72 (2005) https://doi.org/10.1016/j.engfracmech.2005.03.006
  8. R. C. Batra and B. M. Love, 'Crack Propagation Due to Brittle and Ductile Failures in Microporous Thermoelastoviscoplastic Functionally Graded Materials,' Engineering Fracture Mechanics, 72 1954-79 (2005) https://doi.org/10.1016/j.engfracmech.2004.11.010
  9. K. Y. Dai, G. R. Liu, X. Han, and K. M. Li, 'Thermomechanical Analysis of Functionally Graded Material (FGM) Plates Using Element-Free Galerkin Method,' Computers & Structures, 83 1487-502 (2005) https://doi.org/10.1016/j.compstruc.2004.09.020
  10. C. Kastritseas, P. A. Smith, and J. A. Yeomans, 'Thermal Shock Fracture in Unidirectional Fibre-Reinforced Ceramicmatrix Composites,' Composites Sci. and Tech., 65 1880-90 (2005) https://doi.org/10.1016/j.compscitech.2005.04.004
  11. B.-L. Wang, Y.-W. Mai, and X.-H. Zhang, 'Thermal Shock Resistance of Functionally Graded Materials,' Acta Materialia, 52 4961-72 (2004) https://doi.org/10.1016/j.actamat.2004.06.008
  12. J. Zhao, X. Ai, J. Deng, and Z. Wang, 'A Model of the Thermal Shock Resistance Parameter for Functionally Gradient Ceramics,' Mater. Sci. and Eng. A, 382 23-9 (2004) https://doi.org/10.1016/j.msea.2004.04.054
  13. B. Zhou and K. Kokini, 'Effect of Surface Pre-Crack Morphology on the Fracture of Thermal Barrier Coatings under Thermal Shock,' Acta Materialia, 52 4189-97 (2004) https://doi.org/10.1016/j.actamat.2004.05.035
  14. J. C. Zhu, Z. D. Yin, and Z. H. Lai, 'Microstructure and Mechanical Properties of $ZrO_2-Ni$ Functionally Gradient Material,' J. Mater. Sci. Tech., 10 188-92 (1994)
  15. H. Waki, K. Ogura, I. Nishikawa, and A. Ohmori, 'Monotonic and Cyclic Deformation Behavior of Plasma-Sprayed Coatings Under Uni-Axial Compressive Loading,' Mater. Sci. and Eng. A, 374 129-36 (2004) https://doi.org/10.1016/j.msea.2004.02.040
  16. J. Q. Li, X. R. Zeng, J. N. Tang, and P. Xiao, 'Fabrication and Thermal Properties of a YSZ-NiCr Joint with an Interlayer of YSZ-NiCr Functionally Graded Material,' J. Eur. Ceram. Soc., 23 1847-53 (2003) https://doi.org/10.1016/S0955-2219(02)00426-0
  17. H. Hamatani, N. Shimoda, and S. Kitaguchi, 'Effect of the Composition Profile and Density of LPPS Sprayed Functionally Graded Coating on the Thermal Shock Resistance,' Sci. and Tech. of Adv. Mater., 4 197-203 (2003) https://doi.org/10.1016/S1468-6996(03)00023-8
  18. J. Zhu, Z. Lai, Z. Yin, J. H. Jeon, and S. Y. Lee, 'Fabrication of $ZrO_2-NiCr$ Functionally Graded Material by Powder Metallurgy,' Mater. Chem. and Phys., 68 130-35 (2001) https://doi.org/10.1016/S0254-0584(00)00355-2
  19. Q. Liu, X. Chen, and N. Gindy, 'Investigation of Acoustic Emission Signals under a Simulative Environment of Grinding Burn,' International Journal of Machine Tools and Manufacture, 46 284-92 (2006) https://doi.org/10.1016/j.ijmachtools.2005.05.017
  20. D. E. Lee, I. Hwang, C. M. O. Valente, J. F. G. Oliveira, and D. A. Dornfeld, 'Precision Manufacturing Process Monitoring with Acoustic Emission,' International Journal of Machine Tools and Manufacture, 46 176-88 (2006) https://doi.org/10.1016/j.ijmachtools.2005.04.001
  21. H. Moriya, T. Fujita, H. Niitsuma, J. Eisenblatter, and G. Manthei, 'Analysis of Fracture Propagation Behavior Using Hydraulically Induced Acoustic Emissions in the Bernburg Salt Mine,' International Journal of Rock Mechanics and Mining Sciences, 43 49-57 (2006) https://doi.org/10.1016/j.ijrmms.2005.04.003
  22. T. Chotard, D. Rotureau, and A. Smith, 'Analysis of Acoustic Emission Signature During Aluminous Cement Setting to Characterise the Mechanical Behaviour of the Hard Material,' J. Eur. Ceram. Soc., 25 3523-31 (2005) https://doi.org/10.1016/j.jeurceramsoc.2004.09.019