DOI QR코드

DOI QR Code

Autogenous Shrinkage of Cement Paste Considering Disjoining Pressure in Thin Adsorbed Region

흡착 영역 분리 압력을 고려한 시멘트페이스트의 자기 수축

  • 이창수 (서울시립대학교 토목공학과) ;
  • 박종혁 (서울시립대학교 토목공학과)
  • Published : 2006.04.30

Abstract

Meniscus, adsorbed layer thickness, capillary pressure and disjoining pressure was deduced in extended meniscus region in cement paste pore by hydrostatic equilibrium. From the results, the relationship between pore size and adsorbed layer thickness could be derived and adsorbed layer thickness represents $0.299{\sim}2.700nm$ according to pore size $1nm{\sim}1{\mu}m$. Especially, disjoining pressure rapidly Increased in less than 10 nm pore size according to adsorbed layer thickness. Therefore, it is interpreted that autogenous shrinkage of cement paste is highly increases in formation of less than 10 nm pore size. Predictions of autogenous shrinkage in cement paste considering driving force for autogenous shrinkage with capillary pressure and disjoining pressure was low in comparison with experiment values between $1{\sim}4$ days and high in later period. These tendency could be thought that pore damage by mercury injection in early age makes shrinkage driving force underestimate and assumption for unsaturated independent pore makes overestimate. These interactions might be needed corrections considering on hydration or pore replacement model.

시멘트페이스트 공극 내 확장 메니스커스 영역을 초승달 영역, 박막 영역, 흡착 영역으로 구분하고 공극 크기에 따른 액막 두께, 흡착층 두께, 모세관 압력, 분리 압력을 압력 평형 방정식을 이용하여 산정하였다. 그 결과 공극 크기와 흡착층 두께와의 연관식을 도출할 수 있었으며, 공극 크기 $1nm{\sim}1{\mu}m$에 따른 흡착층 두께는 $0.299{\sim}2.700nm$로 나타났고 특히 10nm이하의 공극에서 흡착층 두께 감소에 따른 분리압력의 증가효과가 크게 나타났다. 따라서 시멘트페이스트의 자기 수축은 10nm이하의 공극이 생성되면서 크게 증가하는 것으로 판단된다. 이러한 분리 압력과 모세관 압력을 수축 구동력으로 적용한 자기 수축 예측치는 실험값에 비하여 재령 $1{\sim}4$일까지는 작게 이후부터는 큰 결과를 나타내었다. 이는 초기재령에서의 공극측정시 공극 손상과 이에 따른 수축구동력 과소평가와 불포화 개별공극 가정에 따른 수축구동력 과대평가의 상호작용으로 판단되므로 추후 이에 대한 보완점으로 수화도등의 공극 대체 모델과 불포화공극에 대한 고려사항이 필요할 것으로 판단된다.

Keywords

References

  1. Mindess, S. and Young, J. F., Concrete, Prentice -Hall Inc., 1981
  2. Tazawa, E. and Miyazawa, S., Autogenous shrinkage of Concrete and Its Importance in Concrete Technology, Creep and Shrinkage of Concrete, edited by Bazant, Z. P. E&FN Spon, 1993
  3. NCHRP Report 410, Silica Fume Concrete for Bridge Decks, National Academy Press, 1998
  4. Hua, C., Acker, P., and Ehrlacher, A., 'Analysis and Models of the Autogenous Shrinkage of Hardening Cement Paste,' Cement and Concrete Research, Vol.25, No.7, 1995, pp.1457-1468 https://doi.org/10.1016/0008-8846(95)00140-8
  5. Nawa, T. and Horita, T., 'Autogenous Shrinkage of High-Performance Concrete,' Proceedings of the International Workshop on Microstructure and Durability to Predict Service Life of Concrete Structures, 2004, pp.4 -16
  6. Ling, Z., Study of Microscale Transport Process and the Stability of the Thin Film in a Loop Constrained Vapor Bubble, Ph. D thesis, Rensselaer Polytechnic Institute, 2002
  7. Lura, P., Autogenous Deformation and Internal Offing of Concrete, Ph.D thesis, Deft University of Technology, 2003
  8. Maekawa, K., Chaube, R., and Kishi, T., Modelling of Concrete Performance, E&FN Spon, 1999
  9. Vladimir, S., Homsy, G., 'Three-Dimensional Steady Vapor Bubbles in Rectangular Microchannels,' Journal of Colloid and Interface Science, 2001, pp.180-189
  10. Hamaker, The London van der Waals Attraction between Spherical Particles, Physica 4, 1937
  11. Tazawa, E. and Miyazawa, S., 'Influence of Cement and Admixture on Autogenous Shrinkage of Cement Paste', Cement and Concrete Research, Vol.25, No.2, 1995, pp.281-287 https://doi.org/10.1016/0008-8846(95)00010-0
  12. Koenders, E., Simulation of Volume Changes in Hardening Cement-Based Materials, PhD thesis, Deft University of Technology, 1997

Cited by

  1. Shrinkage Cracking Resistance of a Very High Performance Concrete for 2LCP in Accordance with the Polymer Powder Mixing Rate vol.20, pp.2, 2018, https://doi.org/10.7855/IJHE.2018.20.2.019