DOI QR코드

DOI QR Code

A FIXED POINT APPROACH TO THE STABILITY OF QUADRATIC FUNCTIONAL EQUATION

  • Jung, Soon-Mo (Mathematics Sectiion College of Science and Technology, Hong-Ik University) ;
  • Kim, Tae-Soo (Department of Mathematics, Chungbuk National University) ;
  • Lee, Ki-Suk (Department of Mathematics Education, Korea National University of Education)
  • Published : 2006.08.01

Abstract

[ $C\u{a}dariu$ ] and Radu applied the fixed point method to the investigation of Cauchy and Jensen functional equations. In this paper, we adopt the idea of $C\u{a}dariu$ and Radu to prove the Hyers-Ulam-Rassias stability of the quadratic functional equation for a large class of functions from a vector space into a complete ${\gamma}-normed$ space.

Keywords

References

  1. L. Cadariu and V. Radu, Fixed points and the stability of Jensen's functional equation, JIPAM. J. Inequal. Pure Appl. Math. 4 (2003), no. 1, Art. 4, 7 pp
  2. L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber. 346 (2004), 43-52
  3. P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), no. 1-2, 76-86 https://doi.org/10.1007/BF02192660
  4. S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64 https://doi.org/10.1007/BF02941618
  5. J. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309 https://doi.org/10.1090/S0002-9904-1968-11933-0
  6. G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), no. 1-2, 143-190 https://doi.org/10.1007/BF01831117
  7. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224
  8. D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel/Boston, 1998
  9. D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153 https://doi.org/10.1007/BF01830975
  10. S.-M. Jung, Hyers-Ulam-Rassias stability of functional equations, Dynam. Sys tems Appl. 6 (1997), no. 4, 541-566
  11. S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), no. 1, 126-137 https://doi.org/10.1006/jmaa.1998.5916
  12. S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001
  13. V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), no. 1, 91-96
  14. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300
  15. Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130 https://doi.org/10.1023/A:1006449032100
  16. F. Skof, Proprieta locali e approssimazione di operatori , Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129 https://doi.org/10.1007/BF02924890
  17. S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publisher, New York, 1960

Cited by

  1. A Fixed Point Approach to the Stability of Quadratic Equations in Quasi Normed Spaces vol.49, pp.4, 2009, https://doi.org/10.5666/KMJ.2009.49.4.691
  2. On the $$\beta $$ β -Ulam–Hyers–Rassias stability of nonautonomous impulsive evolution equations vol.48, pp.1-2, 2015, https://doi.org/10.1007/s12190-014-0813-2
  3. Existence and stability of Stieltjes quadratic functional integral equations vol.53, pp.1-2, 2017, https://doi.org/10.1007/s12190-015-0963-x
  4. A class of nonlinear differential equations with fractional integrable impulses vol.19, pp.9, 2014, https://doi.org/10.1016/j.cnsns.2014.01.016
  5. A Fixed Point Approach to the Stability of ann-Dimensional Mixed-Type Additive and Quadratic Functional Equation vol.2012, 2012, https://doi.org/10.1155/2012/482936
  6. STABILITY OF THE MONOMIAL FUNCTIONAL EQUATION IN QUASI NORMED SPACES vol.47, pp.4, 2010, https://doi.org/10.4134/BKMS.2010.47.4.777
  7. A functional equation having monomials as solutions vol.216, pp.1, 2010, https://doi.org/10.1016/j.amc.2010.01.006
  8. Stability of a Bi-Additive Functional Equation in Banach Modules Over aC⋆-Algebra vol.2012, 2012, https://doi.org/10.1155/2012/835893
  9. Normed spaces equivalent to inner product spaces and stability of functional equations vol.87, pp.1-2, 2014, https://doi.org/10.1007/s00010-013-0193-y
  10. A HYPERSTABILITY RESULT FOR THE CAUCHY EQUATION vol.89, pp.01, 2014, https://doi.org/10.1017/S0004972713000683
  11. Existence and approximation of solutions of fractional order iterative differential equations vol.11, pp.10, 2013, https://doi.org/10.2478/s11534-013-0270-9
  12. Existence and β-Ulam-Hyers stability for a class of fractional differential equations with non-instantaneous impulses vol.2015, pp.1, 2015, https://doi.org/10.1186/s13662-015-0415-9
  13. Stability for a family of equations generalizing the equation of p-Wright affine functions vol.276, 2016, https://doi.org/10.1016/j.amc.2015.12.001
  14. Analysis of fractional order differential coupled systems vol.38, pp.15, 2015, https://doi.org/10.1002/mma.3298
  15. Hyperstability of the Cauchy equation on restricted domains vol.141, pp.1-2, 2013, https://doi.org/10.1007/s10474-013-0302-3
  16. On the generalized Hyers–Ulam stability of multi-quadratic mappings vol.62, pp.9, 2011, https://doi.org/10.1016/j.camwa.2011.08.057
  17. Stability of ann-Dimensional Mixed-Type Additive and Quadratic Functional Equation in Random Normed Spaces vol.2012, 2012, https://doi.org/10.1155/2012/547865
  18. On a new class of impulsive fractional differential equations vol.242, 2014, https://doi.org/10.1016/j.amc.2014.06.002
  19. A fixed-point approach to the stability of a functional equation on quadratic forms vol.2011, pp.1, 2011, https://doi.org/10.1186/1029-242X-2011-82
  20. Fractional order differential equations with iterations of linear modification of the argument vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1847-2013-329