열-탄성계를 고려한 엑추에이터 위상 최적설계

Topology Optimization of Actuator for Thermo-Elastic Systems

  • 임오강 (부산대학교 기계공학부 기계기술연구소) ;
  • 김대우 (부산대학교 기계설계공학과) ;
  • 최은호 (부산대학교 기계설계공학과)
  • 발행 : 2007.12.30

초록

위상 최적화 기술은 제품의 초기단계의 개념설계에 유용한 기술이며, 주로 구조물의 탄성을 고려한 분야를 중심으로 개발되었다. 그러나 일반적인 기계의 정밀도가 향상됨에 따라 열적인 영향을 함께 고려할 경우가 많아지게 되어, 열과 탄성계를 동시에 고려하는 위상 최적설계가 필요하다. 본 연구에서 균질화법을 이용하여 열-탄성계를 고려한 위상 최적설계를 해석하였다. 열-탄성 문제에서는 열전달 해석과 구조해석을 고려하는 문제이므로 열전달 재료 물성치와 구조 재료 물성치를 함께 사용하였다. 가동에너지를 기계적인 변위 또는 응력으로 변환하는 트랜스듀서인 액츄에이터의 설계에 적용하였으며, 열계와 탄성계 그리고 열-탄성계를 동시에 해석한 설계 결과를 얻었다. 얻어진 각각의 결과를 동일한 하중조건으로 재해석한 결과, 열-탄성계를 고려하였을 경우가 각각의 계를 고려했을 경우보다 개선된 성능을 가진다.

Topology optimization techniques have been developed as a very efficient design tool and utilized for design engineering processes in many industrial sections during the past decade. And topology optimization has become the focus into structural optimization design up to now. Recently, thermally actuated compliant mechanisms have a wide range of applications. In this research, the thermo-elastic problem is a coupled problem which has to consider heat transfer analysis and structural analysis. Hence, the thermo-elastic problem has to deal with heat transfer material properties and structural material properties at the same time. The numerical examples are presented. From the results, it was shown that in terms of the displacement after optimization. Moreover, this paper compared thermo-system, elastic-system with thermo-elastic system and was shown a good result of topology optimization while thermo-elastic system was used.

키워드

참고문헌

  1. 김병수, 서명원 (1998) 최적조건법에 의한 위상 최적화 연구, 한국자동차공학회논문집. 7(8). pp. 224-232
  2. Ananthasuresh, G. K., Kota, S., Gianchandani, Y. (1994) A methodical approach to the design of compliant micro-mechanisms, Solid State Sensor and Actuator Workshop, pp.189-192
  3. Bendsoe, M. P., Kikuchi, N. (1998) Optimization of Structural Topology. Shape and Materials, Springer
  4. Bruns, T. E., Tortorelli, D. A. (1999) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int. J. Numer. Methods Eng., 57 (10). pp.372-374
  5. Buhl, T., Pedersen, C. B. W., Sigmund, O. (2000) Stiffness design of geometrically non-linear structures using topology optimization. DCAMM. p.614
  6. Chang, S. Y., Cho, J. H., Youn, S. K, Kim, C. S., Oh, D. H. (2001) Topology optimization of a HDD actuator arm, Computational Structural Engineering, 1(2), pp.89-96
  7. Hashin, Z., Shtrikman, S. (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Obvs. Solids. 11. pp.127 - 140 https://doi.org/10.1016/0022-5096(63)90060-7
  8. Hassani, B., Hinton, E. (998) Homogenization and Structural Topology Optimization: Theory, Practice and Software, Springer, London. p.268
  9. Haug, E. J., Choi, K. K., Komkov, V. (1986) Design Sensitivity Analysis of Structural Systems, Academic Press Inc ., Orlando, p.381
  10. Lions, J. L. (1981) Some methods in mathematical analysis of systems and their control, Harwood Academin, p.572
  11. Midha, S., Norton, T. W., Howell, L. L. (1992) On the nomenclature and classification of compliant mechanisms: Abstraction of mechanisms and mechanism synthesis problems, Flexible Mechanisms. Dynamics and Analysis Conference. 47. pp.13-16
  12. Petersen, K. E. (1982) Silicon as a mechanical material. Proc. IEEE, pp. 420-457
  13. Rodriques, H., Fernandes, P. (1995) A material based model for topology optimization of thermoelastic structures. Int. J. Numer. Methods Eng. pp.218-220
  14. Sigmund, O., Torquato, S. (1996) Composites with extreme thermal expansion coefficients. Appl. Pbvs. Lett., pp.3203-3205
  15. Sigmund, O. (1997) Design of thermo mechanical actuators using topology optimization, 2nd World Congress on Structural and Multidisciplinary Optimization. IFTR. pp.393-398
  16. Wang, S., Kang, J., Noh, J. (2004) Topology optimization of induction motor of rotary compressor, IEEE Transaction on Magnetics. 40(3). pp.1591-1596 https://doi.org/10.1109/TMAG.2004.827187