DOI QR코드

DOI QR Code

AtHAP3b Plays a Crucial Role in the Regulation of Flowering Time in Arabidopsis during Osmotic Stress

  • Chen, Nai-Zhi (State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University) ;
  • Zhang, Xiu-Qing (State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University) ;
  • Wei, Peng-Cheng (State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University) ;
  • Chen, Qi-Jun (State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University) ;
  • Ren, Fei (State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University) ;
  • Chen, Jia (State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University) ;
  • Wang, Xue-Chen (State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University)
  • Published : 2007.11.30

Abstract

The HAP complex has been found in many eukaryotic organisms. HAP recognizes the CCAAT box present in the promoters of 30% of all eukaryotic genes. The HAP complex consists of three subunits - HAP2, HAP3 and HAP5. In this paper, we report the biological function of the AtHAP3b gene that encodes one of the HAP3 subunits in Arabidopsis. Compared with wild-type plants, hap3b-1 and hap3b-2 mutants exhibited a delayed flowering time under long-day photoperiod conditions. Moreover, the transcription levels of FT were substantially lower in the mutants than in the wild-type plants. These results imply that AtHAP3b may function in the control of flowering time by regulating the expression of FT in Arabidopsis. In a subsequent study, AtHAP3b was found to be induced by osmotic stress. Under osmotic stress conditions, the hap3b- 1 and hap3b-2 mutants flowered considerably later than the wild-type plants. These results suggest that the AtHAP3b gene plays more important roles in the control of flowering under osmotic stress in Arabidopsis.

Keywords

References

  1. Albani, D. and Robert, L. S. (1995) Cloning and characterization of a Brassica napus gene encoding a homologue of the Bsubunit of a heteromeric CCAAT-binding factor. Gene 167, 209-213. https://doi.org/10.1016/0378-1119(95)00680-X
  2. Bucher P., (1990) Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated prolaboratory. J. Mol. Biol. 212, 563-578. https://doi.org/10.1016/0022-2836(90)90223-9
  3. Cao, S. Q., Ye, M. and Jiang, S. T. (2005) Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep. 24, 683-690. https://doi.org/10.1007/s00299-005-0061-x
  4. Chai, M. F., Wei, P. C., Chen, Q. J., An, R., Chen, J., Yang, S. and Wang, X. C. (2006) NADK3, a novel cytoplasmic source of NADPH, is required under conditions of oxidative stress and modulates abscisic acid responses in Arabidopsis. Plant J. 47, 665-674. https://doi.org/10.1111/j.1365-313X.2006.02816.x
  5. Combier, J. P., Frugier, F., de Billy, F., A. Boualem, El-Yahyaoui, F., Moreau, S., Vernie, T., Ott, T., Gamas, P., Crespi, M. and Niebel, A. (2006) MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev. 20, 3084-3088. https://doi.org/10.1101/gad.402806
  6. Edwards, D., Murrey, J. A. H. and Smith, A. G., (1998) Multiple genes coding the conserved CCAAT-box transcription complex are expressed in Arabidopsis. Plant Physiol. 117, 1015-1022. https://doi.org/10.1104/pp.117.3.1015
  7. Forsburg, S. L. and Guarente, L., (1989) Identification and characterization of HAP4: a third component of CCAATbinding HAP2/HAP3 heteromer. Genes Dev. 3, 1166-1178. https://doi.org/10.1101/gad.3.8.1166
  8. Gusmaroli, G., Tonelli, C., and Mantovani, R. (2002) Regulation of novel members of the Arabidopsis thaliana CCAAT-binding nuclearfactor Y subunits. Gene 283, 41-48. https://doi.org/10.1016/S0378-1119(01)00833-2
  9. Gusmaroli, G., Tonelli, C. and Mantovani, R., (2001) Regulation of the CCAAT-binding NF-Y subunits in Arabidopsis thaliana. Gene 264, 173-185. https://doi.org/10.1016/S0378-1119(01)00323-7
  10. Kim, H. J., Hyun, Y., Park, J. Y., Park, M. J., Park, M. Y., Kim, M. D., Kim, H. J., Lee, M. H., Moon, J., Lee, I. and Kim J. (2004) A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nat. Genet. 36, 167-171. https://doi.org/10.1038/ng1298
  11. Koornneef, M., Alonso-Blanco, C., Blankestijn-de Vries, H., Hanhart, C. and Peeters, A. (1998) Genetic interactions among late-flowering mutants of Arabidopsis. Genetics 148, 885-892.
  12. Kwong, R. W., Bui, A. Q., Lee, H., Kwong, L. W., Fischer, R. L., Goldberg, R. B. and Harada, J. J. (2003) LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell 15, 5-18. https://doi.org/10.1105/tpc.006973
  13. Lee, H. S., Fischer, R. L., Goldberg, R. B. and Harada, J. J. (2003) Arabidopsis LEAFY COTYLEDON1 represents a functionally specializedsubunit of the CCAAT binding transcription factor. Proc. Natl. Acad. Sci. USA 100, 2152-2156. https://doi.org/10.1073/pnas.0437909100
  14. Li, X. Y., Mantovani, R., Vanhuijsduijnen, R. H., Andre, I., Benoist, C. and Mathis, D. (1992) Evolutionary variation of the CCAAT-binding transcription factor NF-Y. Nucleic Acids Res. 20, 1087-1091. https://doi.org/10.1093/nar/20.5.1087
  15. Lotan, T., Ohto, M., Yee, K. M., West, M. A., Lo, R., Kwong, R. W., Yamagishi, K., Fischer, R. L., Goldberg, R. B. and Harada, J. J. (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93, 1195-1205. https://doi.org/10.1016/S0092-8674(00)81463-4
  16. Maity, S. and de Crombrugghe, B. (1998) Role of the CCAATbinding protein CBF/NF-Y in transcription. Trends Biochem. Sci. 23, 174-178. https://doi.org/10.1016/S0968-0004(98)01201-8
  17. Mantovani, R. (1999) The molecular biology of the CCAATbinding factor NF-Y. Gene 239, 15-27. https://doi.org/10.1016/S0378-1119(99)00368-6
  18. McNabb, D. S., Tseng, K. A. and Guarente, L. (1997) The Saccaromyces cerevisiae Hap5p homologue from fission yeast reveals two conserved domains that are essential for assembly of heterotetrameric CCAAT binding factor. Mol. Cell. Biol. 17, 7008-7018. https://doi.org/10.1128/MCB.17.12.7008
  19. Miyoshi, K., Ito, Y., Serizawa, A. and Kurata, N. (2003) OsHAP3 genes regulate chloroplast biogenesis in rice. Plant J. 36, 532-540. https://doi.org/10.1046/j.1365-313X.2003.01897.x
  20. Robson, F., Costa, M. M. R., Hepworth, S. R., Vizir, I., Pineiro, M., Reeves, P. H., Putterill, J. and Coupland, G. (2001) Functional importance of conserved domains in the floweringtime gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J. 28, 619-631. https://doi.org/10.1046/j.1365-313x.2001.01163.x
  21. Romier, C., Cocchiarella, F., Mantovani, R. and Moras, D. (2003) The NF-YB/NF-YC structure gives insight into DNA binding and transcription regulation by CCAAT factor NF-Y. J. Biol. Chem. 278, 1336-1345. https://doi.org/10.1074/jbc.M209635200
  22. Ruiz-Garcia, L., Madueno, F., Wilkinson, M., Haughn, G., Salinas, J. and Martinez-Zapater, J., Wenkel, S., Turck, F., Singer, K., Gissot, L., Le Gourrierec, J., Samach, A. and Coupland, G. (2006) CONSTANS and the CCAAT box Binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 18, 2971-2984. https://doi.org/10.1105/tpc.106.043299
  23. Wigge, P. A., Kim, M. C., Jaeger, K. E., Busch, W., Schmid, M., Lohmann, J. U. and Weigel, D. (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309, 1056-1059. https://doi.org/10.1126/science.1114358
  24. Xing, Y. Y., Zhang, S. U., Olesen, J. T., Rich, A. and Guarente, L. (1994) Subunit interaction in the CCAAT-binding heteromeric complex is mediated by a very short alpha-helix in HAP2. Proc. Natl. Acad. Sci. USA 91, 3009-3013. https://doi.org/10.1073/pnas.91.8.3009

Cited by

  1. Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time vol.35, pp.4, 2016, https://doi.org/10.1007/s00299-015-1927-1
  2. A Major QTL, Ghd8, Plays Pleiotropic Roles in Regulating Grain Productivity, Plant Height, and Heading Date in Rice vol.4, pp.2, 2011, https://doi.org/10.1093/mp/ssq070
  3. GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress vol.82, pp.1-2, 2013, https://doi.org/10.1007/s11103-013-0040-5
  4. Studies on Differential Nuclear Translocation Mechanism and Assembly of the Three Subunits of the Arabidopsis thaliana Transcription Factor NF-Y vol.5, pp.4, 2012, https://doi.org/10.1093/mp/ssr107
  5. Overexpression of wheat NF-YA10 gene regulates the salinity stress response in Arabidopsis thaliana vol.86, 2015, https://doi.org/10.1016/j.plaphy.2014.11.011
  6. Wide-scale screening of T-DNA lines for transcription factor genes affecting male gametophyte development in Arabidopsis vol.25, pp.1, 2012, https://doi.org/10.1007/s00497-011-0178-8
  7. Duplication and Functional Diversification of HAP3 Genes Leading to the Origin of the Seed-Developmental Regulatory Gene, LEAFY COTYLEDON1 (LEC1), in Nonseed Plant Genomes vol.25, pp.8, 2008, https://doi.org/10.1093/molbev/msn105
  8. The Nuclear Factor Y subunits NF-YB2 and NF-YB3 play additive roles in the promotion of flowering by inductive long-day photoperiods in Arabidopsis vol.228, pp.5, 2008, https://doi.org/10.1007/s00425-008-0773-6
  9. Identification of AtSM34, a novel tonoplast intrinsic protein-interacting polypeptide expressed in response to osmotic stress in germinating seedlings vol.56, pp.33, 2011, https://doi.org/10.1007/s11434-011-4793-4
  10. OsNF-YC2 and OsNF-YC4 proteins inhibit flowering under long-day conditions in rice vol.243, pp.3, 2016, https://doi.org/10.1007/s00425-015-2426-x
  11. Genome-Wide Identification, Classification, and Expression of NF-YB Gene Family in Soybean vol.38, pp.9, 2013, https://doi.org/10.3724/SP.J.1006.2012.01570
  12. ABSCISIC ACID INSENSITIVE3 regulates abscisic acid-responsive gene expression with the nuclear factor Y complex through the ACTT-core element inPhyscomitrella patens vol.199, pp.1, 2013, https://doi.org/10.1111/nph.12251
  13. Moderate drought causes dramatic floral transcriptomic reprogramming to ensure successful reproductive development in Arabidopsis vol.14, pp.1, 2014, https://doi.org/10.1186/1471-2229-14-164
  14. Regulation of flowering in temperate cereals vol.12, pp.2, 2009, https://doi.org/10.1016/j.pbi.2008.12.010
  15. Identification of Differentially Expressed Genes in Chilling-Induced Potato (Solanum tuberosum L.); a Data Analysis Study vol.177, pp.4, 2015, https://doi.org/10.1007/s12010-015-1778-9
  16. Identification and expression profile analysis of NUCLEAR FACTOR-Y families in Physcomitrella patens vol.6, 2015, https://doi.org/10.3389/fpls.2015.00642
  17. Sequence-Specific Transcription Factor NF-Y Displays Histone-like DNA Binding and H2B-like Ubiquitination vol.152, pp.1-2, 2013, https://doi.org/10.1016/j.cell.2012.11.047
  18. Flowering time regulation: photoperiod- and temperature-sensing in leaves vol.18, pp.10, 2013, https://doi.org/10.1016/j.tplants.2013.05.003
  19. AtHAP5A modulates freezing stress resistance in Arabidopsis through binding to CCAAT motif ofAtXTH21 vol.203, pp.2, 2014, https://doi.org/10.1111/nph.12812
  20. NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod-dependent flowering in Arabidopsis thaliana vol.63, pp.3, 2010, https://doi.org/10.1111/j.1365-313X.2010.04247.x
  21. Cloning and Functional Analysis of GmNF-YC2 Gene in Soybean (Glycine max) vol.38, pp.9, 2012, https://doi.org/10.3724/SP.J.1006.2012.01607
  22. Microarray analysis of the moss Physcomitrella patens reveals evolutionarily conserved transcriptional regulation of salt stress and abscisic acid signalling vol.72, pp.1-2, 2010, https://doi.org/10.1007/s11103-009-9550-6
  23. Wheat flowering repressor VRN2 and promoter CO2 compete for interactions with NUCLEAR FACTOR-Y complexes vol.67, pp.5, 2011, https://doi.org/10.1111/j.1365-313X.2011.04630.x
  24. Overexpression of a NF-YB3 transcription factor from Picea wilsonii confers tolerance to salinity and drought stress in transformed Arabidopsis thaliana vol.94, 2015, https://doi.org/10.1016/j.plaphy.2015.05.001
  25. Flowering Newsletter bibliography for 2007 vol.64, pp.18, 2013, https://doi.org/10.1093/jxb/ern109
  26. TaNF-YC11, one of the light-upregulated NF-YC members in Triticum aestivum, is co-regulated with photosynthesis-related genes vol.10, pp.2, 2010, https://doi.org/10.1007/s10142-010-0158-3
  27. Genome-Wide Identification and Expression Analysis of NF-Y Transcription Factor Families in Watermelon (Citrullus lanatus) vol.36, pp.3, 2017, https://doi.org/10.1007/s00344-017-9670-1
  28. Homologous HAP5 subunit from Picea wilsonii improved tolerance to salt and decreased sensitivity to ABA in transformed Arabidopsis vol.238, pp.2, 2013, https://doi.org/10.1007/s00425-013-1894-0
  29. Overexpression of a garlic nuclear factor Y (NF-Y) B gene, AsNF-YB3, affects seed germination and plant growth in transgenic tobacco vol.127, pp.2, 2016, https://doi.org/10.1007/s11240-016-1076-4
  30. Duplication ofOsHAPfamily genes and their association with heading date in rice vol.67, pp.6, 2016, https://doi.org/10.1093/jxb/erv566
  31. Engineering nitrogen use efficient crop plants: the current status vol.10, pp.9, 2012, https://doi.org/10.1111/j.1467-7652.2012.00700.x
  32. Constitutive overexpression of theTaNF-YB4gene in transgenic wheat significantly improves grain yield vol.66, pp.21, 2015, https://doi.org/10.1093/jxb/erv370
  33. TaNF-YB3 is involved in the regulation of photosynthesis genes in Triticum aestivum vol.11, pp.2, 2011, https://doi.org/10.1007/s10142-011-0212-9
  34. Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening vol.17, pp.1, 2016, https://doi.org/10.1186/s12864-015-2334-2
  35. A transcription factor hierarchy defines an environmental stress response network vol.354, pp.6312, 2016, https://doi.org/10.1126/science.aag1550
  36. Gene Family Analysis of the Arabidopsis NF-YA Transcription Factors Reveals Opposing Abscisic Acid Responses During Seed Germination vol.32, pp.5, 2014, https://doi.org/10.1007/s11105-014-0704-6
  37. An Overview of the Genetics of Plant Response to Salt Stress: Present Status and the Way Forward vol.186, pp.2, 2018, https://doi.org/10.1007/s12010-018-2738-y
  38. Genetic Control and Comparative Genomic Analysis of Flowering Time in Setaria (Poaceae) vol.3, pp.2, 2013, https://doi.org/10.1534/g3.112.005207
  39. The General Transcription Repressor TaDr1 Is Co-expressed With TaVrn1 and TaFT1 in Bread Wheat Under Drought vol.10, pp.1664-8021, 2019, https://doi.org/10.3389/fgene.2019.00063