Antibacterial Effect on Oral Pathogenic Bacteria of Phytoncide from Chamaecyparis Obtusa

구강병원균에 대한 편백 피톤치드의 항균작용

  • Kang, Soo-Kyung (Dept. of Oral Medicine, College of Dentistry, Kyung Hee University) ;
  • Shin, Mi-Kyoung (Institute of Oral biology, College of Dentistry, Kyung Hee University) ;
  • Auh, Q-Schick (Dept. of Oral Medicine, College of Dentistry, Kyung Hee University) ;
  • Chun, Yang-Hyun (Dept. of Oral Medicine, College of Dentistry, Kyung Hee University) ;
  • Hong, Jung-Pyo (Dept. of Oral Medicine, College of Dentistry, Kyung Hee University)
  • 강수경 (경희대학교 치과대학 구강내과학교실) ;
  • 신미경 (경희대학교 치과대학 구강생물학연구소) ;
  • 어규식 (경희대학교 치과대학 구강내과학교실) ;
  • 전양현 (경희대학교 치과대학 구강내과학교실) ;
  • 홍정표 (경희대학교 치과대학 구강내과학교실)
  • Published : 2007.03.30

Abstract

Plant extract has attracted considerable interest in oral disease therapy. The present study was performed to observe the antibacterial effect on cariogenic Streptococcus mutans GS5 and Streptococcus sobrinus 6715, and periodontopathic Actinobacillus actinomycetemcomitans Y4 of phytoncide from Chamaecyparis obtusa Sieb. et Zucc employing the measurement of optical density, viable cell counts, and antibiotic sensitivity. The results were as follows: 1. Minimum inhibitory concentration of the phytoncide for S. mutans, S. sobrinus, and A. actinomycetemcomitans was observed to be 0.5%, 1%, and 0.2%, respectively. 2. Minimum bactericidal concentration of the phytoncide for S. mutans, S. sobrinus, and A. actinomycetemcomitans was determined to be 0.5%, 2%, and 0.2%, respectively. 3. The bacteria exposed to the phytoncide become more sensitive to antibiotics. The phytoncide enhanced significantly antibacterial activity of ampicillin against S. mutans and S. sobrinus. It also increased significantly the activity of penicillin and amoxicillin against S. sobrinus. In contrast, the phytoncide augmented the activity of amoxicillin and cefotaxime against A. actinomycetemcomitans but the increase was not statistically significant. The overall results indicate that phytoncide from Chamaecyparis obtusa Sieb. et Zucc used for this study has a strong antibacterial activity against cariogenic and periodontopathic bacteria and that it also has permeabilizing effect on certain antibiotics against these bacteria. Therefore, the phytoncide may be used as a candidate for prevention and therapeutic agent against oral infectious disease including dental caries and periodontal disease.

천연 식물 추출물을 구강 질환 분야에 활용하는 방안이 다양하게 모색되고 있다. 본 연구는 편백나무에서 추출한 휘발성 정유인 피톤치드를 치의학분야에 활용하고자 치아우식증 원인균인 Streptococcus mutans GS5와 Streptococcus sobrinus 6715, 급진성 치주염에 관련된 Actinobacillus actinomycetemcomitans Y4에 대한 항균효과를 미생물학적으로 실험하였다. 흡광도 측정, 생균수 검사, 항생제 감수성 검사를 통해 다음과 같은 결과를 얻을 수 있었다. 1. 피톤치드의 최소억제농도(minimum inhibitory concentration; MIC)는 S. mutans GS5는 0.5%, S. sobrinus 6715는 1%, A. actinomycetemcomitans Y4는 0.2%로 측정되었다. 2. 피톤치드의 최소살균농도(minimum bactericidal concentration; MBC)는 S. mutans GS5는 0.5%, S. sobrinus 6715는 2%, A. actinomycetemcomitans Y4는 0.2%로 측정되었다. 3. 피톤치드에 노출된 실험균주에 대한 항생제 감수성 실험에서 피톤치드를 적용했을 경우, S. mutans GS5과 S. sobrinus 6715는 ampicillin에 대한 감수성이 유의성 있게 증가하였다. S. sobrinus 6715의 경우는 penicillin과 amoxicillin에 대한 감수성도 피톤치드에 의해 유의성 있게 증가하였다. 반면, A. actinomycetemcomitans Y4는 amoxicillin과 cefotaxime에 대한 감수성이 다소 증가하였으나 유의성은 없었다. 이상의 결과로, 편백 피톤치드 정유는 치아우식증 원인균인 Streptococcus mutans와 Streptococcus sobrinus, 급진성 치주염 원인균인 Actinobacillus actinomycetemcomitans에 대한 살균효과가 있을 뿐만 아니라 이들 균의 항생제 감수성을 높이는 것으로 판단된다. 따라서, 피톤치드는 치아우식증과 치주질환을 포함한 구강질환에 대해 예방적이고 치료적인 효과를 얻을 가능성이 있는 것으로 생각된다.

Keywords

References

  1. Selye H. The general adaptation syndrome and disease of adaptation. J Clin Endocrinol 1946;6:117 https://doi.org/10.1210/jcem-6-2-117
  2. Cannon WB. Bodily changes in pain, hunger, fear and rage: An account of recent research into the function of emotional excitement (2nd Ed.). New York, 1929, Appleton-Century-Crofts, pp. 259-265
  3. 전양현, 홍정표. 스트레스와 구강질환. 대한신심스트레스학회지 1995;3(1):57-72
  4. Kleinhauz IEM, Baut R, Littner M. Antecedents of Burning Mouth Syndrome: recent life event vs. psychopathologic aspects. J Dent Res 1994;73: 567-572 https://doi.org/10.1177/00220345940730021301
  5. Malcolm AL, Vernon JB, Martin SG. Burket's oral medicine-diagnosis and treatment. 9th ed., 1994, J.B. Lippincott Company, pp. 132-138
  6. 김종배, 백대일, 문혁수, 마득상. 플라보노이드와 동엽록 소 및 페파민트를 배합한 츄잉껌의 구취억제에 관한 연 구. 대한구강보건학회지 1990;14(1):12-15
  7. 고재승, 김규천. 구강생리학, 제6판, 서울, 2005, 대한나래출판사, pp303
  8. Humprey SP, Williamson RT. A review of saliva: normal composition, flow, and function. J Prosthet Dent 2001;85(2):162-169 https://doi.org/10.1067/mpr.2001.113778
  9. Scannapieco FA, Torres G, Levine MJ. Salivary alpha-amylase: role in dental plaque and carries formation. oral Biol Med 1993;4(3-4):301-307
  10. Garrett JR. Effect of autonomic nerve stimulation on salivary parenchyma and protein secretion. Oral Biol 1999;2:59-79
  11. Baum BJ. Principles of salivary secretion. Ann NY Acad Sci 1993;694:17-23 https://doi.org/10.1111/j.1749-6632.1993.tb18338.x
  12. Park HK, Chun YH, Lee JY et al. Expression of clusterin in the salivary gland under restraint stress. Kor J Stress 1998;6:33-44
  13. Selye H. Forty years of stress research:principal remaining problems and misconceptions. Canad Med Ass J 1976;115:53-56
  14. Milsum JH. A model of the eustress system for health/illness. Behavioral Science 1985;30:179-186 https://doi.org/10.1002/bs.3830300402
  15. 김영준. 스트레스와 정신의학. 대한신심스트레스학회지 1993;1(1):97-102
  16. Tanaka M, Kohno Y, Nakagawa R et al. Time-related differences in noradrenalin turn over in rat brain regions by stress. Phamacol Biochem Behav 1982;16:315-319 https://doi.org/10.1016/0091-3057(82)90166-6
  17. Guyton. Textbook of medical physiology. 8th ed., Philadelphia, 1991, W.B. Saunders co., pp.848
  18. Nukina I, Glavin GB, Labella FS. Acute cold-resistant stress affects alpha 2- adrenoreceptors in specific brain regions of the rat. Brain Res 1987;401:30-33 https://doi.org/10.1016/0006-8993(87)91159-0
  19. Finkelstein Y, Koffler B, Rabey JM et al. Dynamics of cholinergic sympathetic mechanisms in Rat hippocampus after stress. Brain Res 1985;343:314-319 https://doi.org/10.1016/0006-8993(85)90749-8
  20. Yoneda Y, Kanmori K, Ida S et al. Stress-induced alteration in metabolism of r-aminobutyric acid in rat brain. J Neurochem 1983;20:350
  21. Dudar JD. The effect of septal nucleus stimulation on the release of acetylcholine from the rabbit hippocampus. Brain Res 1975;83:123-133 https://doi.org/10.1016/0006-8993(75)90863-X
  22. Rossier J, Guilemin R, Bloom F. Foot shock induced stress decrease leu-enkephalin immunoreactivity in rat hypothalamus. Eur J Pharmacol 1978;48:465-466 https://doi.org/10.1016/0014-2999(78)90178-4
  23. Arancibia S, Tapia-Arancibia L, Assenmacher I at al. Direct evidence of short-term cold induced TRH release in the median eminence of un anesthetized rats. Neuroendocrinology 1983;37:225-228 https://doi.org/10.1159/000123547
  24. Cannon WB. The emergency function of the adrenal medulla in pain and the major emotions. Am Physiology 1974;33:356-372
  25. Selye H. Stress without distress. Philadelphia, 1974, J.B. Lippincott Company, pp. 127-131
  26. Frankenhaeuser M, Lundberg U, Chesney M. Women, work and health. Stress and opportunities. New York, 1991, Plenum Press, pp. 320-322
  27. Frankenhaeuser M, Lundberg U. Sympathetic-adrenal and pituitary-adrenal response to challenge. New York, 1985, Plenum Press, pp284-288
  28. Eliasson K, Hjemdahl P, kahan T. Circulatory and sympatho-adrenal responses to stress in boderline and established hypertension. J Hypertens 1983;1:131
  29. LeBlanc J, Cote J, Jobin M at al. Plasma catecholamines and cardiovascular responses to cold and mental activity. J Appl Physiol 1979;47:1207
  30. Johnson DG. Plasma norepinephrine reponses of man in cold water. J Appl Physiol 1977;43:216
  31. Kopin IJ, Lake RC, Ziegler M. Plasma levels of norepinephrine. Ann Intern Med 1978;88:671 https://doi.org/10.7326/0003-4819-88-5-671
  32. 김형석, 안재성. 한냉 스트레스하에서의 흰쥐뇨중 카테 콜아민의 분비량 변화에 관한 연구. 대한신심스트레스학회 1993;1:17-26
  33. 민병일, 한승호, 윤상협, 등. 치수자극에 의하여 유발된 혈압상승 및 혈중 카테콜아민 농도의 변화에 대한 전침 자극의 영향. 대한신심스트레스학회지 1994;2(1):55-62
  34. Bernard C. Lecons sur les Phenomeones de la Vie Communs aux Animaux et aux Vegetaux. Paris, 1878, Balliere
  35. Cannon WB. Bodily changes in pain, hunger, fear and rage: An account of recent research into the function of emotional excitement (2nd Ed.). New York, 1929, Appleton-Century-Crofts
  36. Selye H. The Stress of Life. New York, 1956, McGraw-Hill
  37. Chrousos GP, Gold, PW. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 1992;267:1244-1252 https://doi.org/10.1001/jama.267.9.1244
  38. Lazarus RS. Coping theory and research past, present, and future. Psychosom Med 1993;55:234-247 https://doi.org/10.1097/00006842-199305000-00002
  39. Bjorntorp P, Holm G, Rosmond R at al. Hypertension and the metabolic syndrome: closely related central origin? Blood Press 2000;9:71-82 https://doi.org/10.1080/08037050050151762
  40. Epel ES, Blackburn EH, Lin J et al. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA 2004;101:17312-17315
  41. Amatruda JM, Livingston JN, Lockwood DH. Cellular mechanisms in selected states of insulin resistance: human obesity, glucocorticoid excess, and chronic renal failure. Diabetes Metab Rev 1985;1:293-317 https://doi.org/10.1002/dmr.5610010304
  42. Chun YH, Hong JP. Stress and oral diseases. Kor Stress Res 1995;3:57-72
  43. Wimmer G, Kohldorfer G, Mischak I et al. Coping with stress: its influence on periodontal therapy. J Periodontol 2005;76(1):90-98 https://doi.org/10.1902/jop.2005.76.1.90
  44. Lundstrom IM, Anneroth KG, Bergstedt HF. Salivary gland function and changes in patients with oral lichen planus. Scand J Dent Res 1982;90:443-458
  45. Maurice M, Mikhail W, Aziz M. Aetiology of recurrent aphthous ulcers (RAU). J Laryngol Otol 1987;101:917-920 https://doi.org/10.1017/S002221510010297X
  46. McCartan BE, Lamey PJ, Wallace AM. Salivary cortisol and anxiety in recurrent aphthous stomatitis. J Oral Pathol Med 1996;25:357-359 https://doi.org/10.1111/j.1600-0714.1996.tb00278.x
  47. Field EA, Longman LP, Bucknall R et al. The establishment of a xerostomia clinic : a prospective study. Br J Oral Maxillofac Surg 1997;35:96-103 https://doi.org/10.1016/S0266-4356(97)90683-5
  48. Sreebny LM. Recognition and treatment of salivary induced conditions. Int Den J 1989;39:197-204
  49. Scannapieco FA, Bergey EJ, Reddy MS et al. Characterization of the Salivary alpha-amylase binding to streptococcus sanguis. Infect Immun 1989;57:2853-2863
  50. 김기석. 구강질환의 감별진단(4판), 서울, 1991, 지성출판사
  51. Bakke M, Tuxen A, Thomsen CE et al. Salivary cortisol level, salivary flow rate and masticatory muscle activity in response to acute mental stress: a comparison between aged and young women. Gerontology 2004;50(6):383-92 https://doi.org/10.1159/000080176
  52. Bergdahl M, Bergdahl J. Low unstimulated salivary flow and subjective oral dryness: association with medication, anxiety, depression and stress. J Dent Res 2000; 79:1652-1658 https://doi.org/10.1177/00220345000790090301
  53. Cavanaugh S, Clark DC, Gibbons RD. Diagnosing depression in the hospitalized medically ill. Psychosomatics 1983;24:809-815 https://doi.org/10.1016/S0033-3182(83)73151-8
  54. Judd LL. Mood disorders in the general population represent an important and worldwide public health problem. Int Clin Psycopharmacol 1995;10:5-10
  55. Bergdahl M, Bergdahl J, Johansson I. Depressive symptoms in individuals with idiopathic subjective dry mouth. J Oral Pathol Med 1997;26:448-450 https://doi.org/10.1111/j.1600-0714.1997.tb00013.x
  56. Bolwig TG, Rafaelsen OJ. Salivation in affective disorders. Pshychol Med 1972;2:232-238 https://doi.org/10.1017/S0033291700042525
  57. Lynch MA, Brightman VJ, Greenber MS. Burket's oral medicine. 9th Ed., Philadelphia, 1994, Lippincott Co., pp 399-400
  58. Contran RS, Kumar V, Robbins SL, Schoen FJ. Robbins pathologic basis of disease. 5th Ed., Philadelphia, 1994, W.B. Saunders Co
  59. Steven A, Lowe J. Pathology. London, 1995, Mosby
  60. Tomei LD, Kiecolt-Glaser JK, Kennedy S at al. Psychological stress and phorbol ester inhibition of radiation-induced apoptosis in human peripheral blood leukocytes. Psychiatry Res 1990;33:59-71 https://doi.org/10.1016/0165-1781(90)90149-Y
  61. Sendo F, Kato T, Yazawa H. Modulation of neutrophil apoptosis by psychological stress and glucocorticoid. Int J Immunopharmacol 1997;19:511-516 https://doi.org/10.1016/S0192-0561(97)00050-7
  62. Kirschbaum C, Hellhammer DH. Salivary cortisol in psychoneuroendocrine research: Recent development and applications. psychoneuroendocrinology 1994;19: 313-33 https://doi.org/10.1016/0306-4530(94)90013-2
  63. Ng V, Koh D, Mok BY et al. Salivary biomarkers associated with academic assessment stress among dental undergraduates. J Dent Educ 2003;67: 1091-1094
  64. Nater UM, Rohleder N, Gaab J et al. Human salivary alpha-amylase reactivity in a psychosocial stress paradigm. Int J Psychophysiol 2005;55:333-342 https://doi.org/10.1016/j.ijpsycho.2004.09.009
  65. Takai N, Yamaguchi M, Aragaki T et al. Effect of psychological stress on salivary cortisol and amylase levels in healthy young adults. Arch Oral Biol 2004;49:963-968 https://doi.org/10.1016/j.archoralbio.2004.06.007
  66. Gilman S, Thornton R, Miller D at al. Effect of exercise stress on parotid gland secretion. Horm Metab Res 1979;11(7):454 https://doi.org/10.1055/s-0028-1095789
  67. Walsh NP, Blannin AK, Clark AM et al. The effects of high intensity intermittent exercise on saliva IgA, total protein and alpha-amylase. J Sports Sci 1999;17(2):129-134 https://doi.org/10.1080/026404199366226
  68. Chartterton RT, Jr Vogelsong KM, Lu YC et al. Salivary alpha-amylase as a measure of endogenous adrenergic activity. Clin Physiol 1996;16:433-48 https://doi.org/10.1111/j.1475-097X.1996.tb00731.x
  69. Rohleder N, Nater UM, Wolf JM et al. Psychosocial stress-induced activation of salivary alpha-amylase: an indicator of sympathetic activity? Ann NY Acad Sci 2004;1032:258-63 https://doi.org/10.1196/annals.1314.033
  70. Nierop A, Bratsikas A, Klinlenberg A et al. Human salivary alpha-amylase reactivity in a psychosocial stress paradigm. J Clin Endocrinol Metab 2006;91:1329-1335 https://doi.org/10.1210/jc.2005-1816
  71. Zarkowski JJ, Brunns DE. Biochemistry of human alpha amylase isoenzymes. Cri Rev Clin Lab Sci 1985;21(4):283-322 https://doi.org/10.3109/10408368509165786
  72. Yamaguchi M, Kanemori T, Kanemaru, M et al. Correlation of stress and salivary amylase activity. Jpn J Med Electron Biol Eng 2001;39:234-39
  73. Nederfors T, Dahlof C. Effect of the beta adrenoceptor antagonists atenolol and propanolol on human whole saliva flow rate and composition. Arch Oral Biol 1992;37(7):579-584 https://doi.org/10.1016/0003-9969(92)90141-T
  74. Gallacher DV, Peterson OH. Stimulus-secretion coupling in mamalian salivary glands. Int Rev Physiol 1983;28:1-52
  75. Nederfors T, Ericsson T, Twetman S at al. Effects of the beta-adrenoceptor antagonists atenolol and propanolol on human parotid and submandibularsublingual salivary secretion. J Dent Res 1994;73(1): 5-10 https://doi.org/10.1177/00220345940730010701
  76. Nater UM, Marca R, Florin L et al. Stress-induced changes in human salivary alpha-amylase. Psychoneuroendocrinology 2006;31:49-58 https://doi.org/10.1016/j.psyneuen.2005.05.010