DOI QR코드

DOI QR Code

Shubnikov-de Haas Oscillations in an Individual Single-Crystalline Semimetal Bismuth Nanowire

단결정 반금속 비스무스 단일 나노선의 Shubnikov-de Haas 진동

  • Kim, Jeong-Min (Department of Materials Science and Engineering, Yonsei University) ;
  • Ham, Jin-Hee (Department of Materials Science and Engineering, Yonsei University) ;
  • Shim, Woo-Young (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Kyoung-Il (Department of Materials Science and Engineering, Yonsei University) ;
  • Jeon, Kye-Jin (Department of Materials Science and Engineering, Yonsei University) ;
  • Jeung, Won-Young (Korea Institute of Science and Technology (KIST)) ;
  • Lee, Woo Young (Department of Materials Science and Engineering, Yonsei University)
  • 김정민 (연세대학교 신소재공학과) ;
  • 함진희 (연세대학교 신소재공학과) ;
  • 심우영 (연세대학교 신소재공학과) ;
  • 이경일 (연세대학교 신소재공학과) ;
  • 전계진 (연세대학교 신소재공학과) ;
  • 정원용 (한국과학기술연구원) ;
  • 이우영 (연세대학교 신소재공학과)
  • Published : 2008.02.25

Abstract

The magneto-transport properties of an individual single crystalline Bi nanowire grown by a spontaneous growth method are reported. A four-terminal device based on an individual 400-nm-diameter nanowire was successfully fabricated using a plasma etching technique that removed an oxide layer that had formed on the surface of the nanowire. Large transverse ordinary magnetoresistance (1401%) and negative longitudinal ordinary magnetoresistance (-38%) were measured at 2 K. It was observed that the period of Shubnikov-de Haas oscillations in transverse geometry was $0.074^{T-1}$, $0.16^{T-1}$ and $0.77^{T-1}$, which is in good agreement with those of bulk Bi. However, it was found that the period of SdH oscillation in longitudinal geometry is $0.24^{T-1}$, which is larger than the value of $0.16^{T-1}$ reported for bulk Bi. The deviation is attributable to the spatial confinement arising from scattering at the nanowire surface boundary.

Keywords

References

  1. J. Heremans, C. M. Thrush, Y. Lin, S. Cronin, Z. Zhang, M. S. Dresselhaus and J. F. Mansfield, Phys. Rev., B61, 2921 (2000) https://doi.org/10.1103/PhysRevB.61.2921
  2. Z. Zhang, X. Sun, M. S. Dresselhaus, J. Y. Ying and J. Heremans, Phys. Rev., B61, 4850 (2000) https://doi.org/10.1103/PhysRevB.61.4850
  3. F. Y. Yang, K. Liu, K. Hong, D. H. Reich, P. C. Searson and C. L. Chien, Science., 284, 1335 (1999) https://doi.org/10.1126/science.284.5418.1335
  4. F. Y. Yang, K. Liu, K. Hong, D. H. Reich, P. C. Searson, C. L. Chien, Y. Leprince-Wang, K. Yu-Zhang and K. Han, Phy. Rev., B61, 6631 (2000)
  5. Y. M. Lin, X. Sun and M. S. Dresselhaus, Phys. Rev., B62, 4610 (2000) https://doi.org/10.1103/PhysRevB.62.4610
  6. W. Shim, D. Kim, K. Lee, K. J. Jeon, W. Lee, J. Chang, S. Han, W. Y. Jeung and M. Johnson, J. Kor. Mag. Soc., 17, 166 (2007) https://doi.org/10.4283/JKMS.2007.17.4.166
  7. K. Liu, C. L. Chien, P. C. Searson and K. Y. Zhang, Appl. Phys. Lett., 73, 1436 (1998) https://doi.org/10.1063/1.122378
  8. K. Liu, C. L. Chien and P. C. Searson, Phys. Rev., B58, R14681 (1998) https://doi.org/10.1103/PhysRevB.58.R14681
  9. J. M. Ziman, Principles of the Theory of Solids (Cambridge University Press, New York, 1964)
  10. J. S. Dhillon and D. Shoenberg, Philos. Trans. R. Soc. London., 248, 1 (1955) https://doi.org/10.1098/rsta.1955.0007

Cited by

  1. The superstability of a variant of Wilson’s functional equation on an arbitrary group vol.26, pp.3-4, 2015, https://doi.org/10.1007/s13370-014-0229-z
  2. On a variant of μ-Wilson’s functional equation on a locally compact group vol.89, pp.5, 2015, https://doi.org/10.1007/s00010-014-0334-y
  3. Comment on “An enhanced polarization mechanism for the metal cations modified amorphous TiO2 based electrorheological materials” by Qing Wu, Bin Yuan Zhao, Chen Fang and Ke Ao Hu vol.21, pp.4, 2006, https://doi.org/10.1140/epje/i2006-10071-7