Effect of Aeration Intensity on Simultaneous Nitrification and Denitrification Efficiency in the Submerged Moving Media Biofilm Process

완전침지형 회전매체 생물막 공정에서 포기강도 조절이 동시 질산화/탈질 효율에 미치는 영향

  • Kim, Jun-myoung (Department of Civil & Environmental engineering, Kongju National University) ;
  • Lee, Sang-min (Department of Environmental engineering, Kongju National University) ;
  • Lim, Kyeong-ho (Department of Civil & Environmental engineering, Kongju National University) ;
  • Kim, Il-gyou (Department of Civil & Environmental engineering, Kongju National University) ;
  • Kang, Ho (Department of Environmental engineering, Chungnam National University)
  • 김준명 (공주대학교 건설환경공학부) ;
  • 이상민 (공주대학교 환경공학과) ;
  • 임경호 (공주대학교 건설환경공학부) ;
  • 김일규 (공주대학교 건설환경공학부) ;
  • 강호 (충남대학교 환경공학과)
  • Received : 2008.01.29
  • Accepted : 2008.03.25
  • Published : 2008.05.30

Abstract

Space separation method that use independent reactor for nitrification and other reactor for denitrification has been commonly used for biological nitrogen removal process like $A^2O$ process. However, this method needs large space and complicate pipelines and time separation method such as SBR process have a difficulty in continuous treatment. Thus biological nitrogen removal process which is capable of continuous treatment, easy opeation and space saving is urgently required. In this research, submerged moving media was used for a biofilm process and suspended sludge was used for biological nitrogen removal at the same time. In particular DO environment by controlling air flow rate was investigated for simultaneous nitrification/denitrification. Total nitrogen removal in aeration rate more than $67L/min{\cdot}m^3$ showed 51~53% and rose to 65%, 70% and 78% in $50L/min{\cdot}m^3$, $58L/min{\cdot}m^3$ and $25L/min{\cdot}m^3$ respectively. Total phosphorus removal was very low about 10~20% more than $67L/min{\cdot}m^3$ aeration rates. But total phosphorus removal roses when reduces aeration rate by $58L/min{\cdot}m^3$ low and it showed total phosphorus removal of 72% in aeration rate $25L/min{\cdot}m^3$.

Keywords

Acknowledgement

Supported by : 대전환경기술개발센터, 공주대학교

References

  1. 고광백 외 13인 공역(2004). 폐수처리공학 II, 동화기술
  2. 김응호(1988). 회전원판법의 오니관리에 관한 기초연구. 상하수도학회지, 1(1), pp. 22-31
  3. 김응호, 오정우(1995). 회전원판법을 이용한 하수의 유기물 산화, 질화 및 탈질화의 고도처리공정 해석. 대한환경공학회지, 15(4), pp. 1083-1091
  4. 김지선, 이성학, 이은주, 김종락, 박종복, 김창원(2004). 혐기 조건에서 인 방출에 대한 nitrate 영향. 추계학술발표회논 문집, 대한환경공학회, pp. 171-177
  5. 김홍태, 김학성, 김규창(2003). 생물학적 질소, 인 제거를 위 한 SMMIAR 공정의 운전특성. 한국환경과학회지, 12(1), pp. 55-61
  6. 박종일, 이태진(2007). 단일반응기를 이용한 동시 질산.탈 질에 관한 연구. 대한환경공학회지, 29(2), pp. 220-228
  7. 신응배, 이두진, 이상엽, 김연권(2001). 혐기조 인방출조건에 영향을 미치는 nitrate, 유기물, 미생물농도사이의 상관관 계, 추계학술발표회논문집, 대한환경공학회, pp. 11-12
  8. 이수철, 이현용, 김동진(2000). 이중층 중공사 생물막 담체 를 이용한 유동층 생물막 반응기에서의 동시 질산화와 탈질. 한국생물공학회지, 15(5), pp. 514-520
  9. 환경부(2004). 수질오염공정시험법
  10. 환경부(2006). 하수도 시설 지도.점검결과
  11. 石黑政儀(1986). 回傳圓板法 における 窒化, 脫窒, 有機物酸 化同時反應 シミコルーシヨン. 下水道協會誌, 23(262), pp. 49-57
  12. APHA, AWWA and WEF (1992). Standard Methods for the Examination of Water and Wastewater, 18th Edition
  13. Astrid, A. and Van, D. G. (1995). Anaerobic oxidation of ammonium is biological mediated process. Appl. Environ. Microbiol., 61, pp. 1246-1251
  14. Gupta, S. K., Raja, S. M. and Gupta, A. B. (1994). Simultaneous nitrification and denitrification in a rotating biological contactor. Environ. Technol., 15, pp. 145-153 https://doi.org/10.1080/09593339409385414
  15. Katie Third (2003). Oxygen management for optimization of nitrogen removal in a sequencing batch reactor. A thesis for the degree of doctor of philosophy in biotechnology, Murdoch University, Western Australia
  16. Kuai, L. and Verstraete, W. (1998). Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system. Appl. Environ. Microbiol., 64, pp. 4500-4506
  17. Pochana, K., Keller, J. and Lant, P. (1999). Model development for simultaneous nitrification and denitrification. Water. Sci. & Tech., 39(1), pp. 235-243
  18. Rittman, B. E. and Langeland, W. E. (1985). Simultaneous denitrification with nitrification in single-channel oxidation ditches. J. Water Pollut. Control Fed., 57, pp. 300
  19. Santos, V., marchal, L., Tramper, J. and Wiffels, R. (1996). Modeling and evaluation of an integrated nitrogen removal system with microorganism co-immobilized in double-layer gel beads. Biotechnol. Prog., 12, pp. 240-248 https://doi.org/10.1021/bp9600041
  20. Thomas, G. P., Chie-Chien, T. and Ben, K. (1995). Nitrogen removal in a partial nitrification/complete denitrification process. Water Environment Research, 70(3), pp. 334-342 https://doi.org/10.2175/106143098X124966
  21. Watanabe, Y., Masuda, S. and Ishiguro, M. (1992). Simultaneous nitrification and denitrification in micro-aerobic biofilms. Water Sci. & Technol., 26(3/4), pp. 511-522 https://doi.org/10.1021/es00027a010