Sensible heat flux estimated by gradient method at Goheung bay wetland

고흥만 습지에서 경도법으로 산출한 현열플럭스

  • Received : 2008.04.04
  • Accepted : 2008.03.03
  • Published : 2008.08.31

Abstract

Meorological data have been collected to monitor the wetland area in Goheung bay since 2003 and four intensive observations were conducted to study effects of the atmospheric turbulence on the energy budget and the ecological changes. We improved an algorithm to estimate the sensible heat flux with routine data. The sensible heat flux estimated by gradient method was in good agreement with that measured by precision instruments such as surface layer scintillometer and ultrasonic anemometer. Diurnal variations of sensible heat flux showed analogous tendency to those of temperature gradient. When the vertical wind shear of horizontal wind components was weak, even though temperature gradient was strong, the gradient method underestimated the sensible heat flux. A compensation for the cloud will make this gradient method be a helpful tool to monitor the ecosystem without expensive instruments except for weak wind shear and temperature gradient.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. 기상청(2001). 한국기후표, 서울기상청, 623
  2. 이종법.김용국(1990). Pasquill 안정도등급의 평가와 안정도 Parameter 산출방법의 개발, J. KAPRA, 6(2), 168-175
  3. Arya, S. P. S.(1998). Introduction to Micro meteorology. Academic Press, pp.403
  4. Arya, S. P. S.(1984). Parameteric relations for the atmospheric boundary layer. Boundary-Layer Meteorol., 30, 57-73 https://doi.org/10.1007/BF00121949
  5. Bosveld, F. C.(1997). Derivaton of fluxes from profiles over a moderately homogeneous forest. Boundary Layer Meteorol., 84, 289-327 https://doi.org/10.1023/A:1000453629876
  6. Businger, J. A., J. C. Wyngaard, Y. Izumi and E. F. Bradley(1971). Flux-Profile Relationships in the Atmospheric Surface Layer. J. Atmos. Sci., 28, 181-189 https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2
  7. Clark, C. A. and R. W. Arritt(1995). Numerical simulations of the effect of soil moisture and vegetation cover on the development of deep convection. J. Appl. Meteor., 34, 2029-2045 https://doi.org/10.1175/1520-0450(1995)034<2029:NSOTEO>2.0.CO;2
  8. De Bruin, H. A. R., B. J. J. M., Van Den Hurk and W. Kohsiek(1995). The scintillation method tested over a dry vineyard area. Boundary-Layer Meteorol., 76, 24-40
  9. Jerald, A. B. and C. C.Kenneth(1999). Estimating sensible heat flux from the Oklahoma Mesonet. J. Appl. Meteor., 39, 102-116
  10. Kusuma, G. R., R. Narasimha and A. Prabhu(1996). Estimation of Drag Coefficient at Low Wind Speeds over the Monsoon Trough Land Region during MONTBLEX-90. Geophys. Res. Lett., 23, 2, 617-2, 620 https://doi.org/10.1029/96GL00423
  11. Kusuma, G. R.(2004). Estimation of the exchange coefficient of heat during low wind convective conditions. Boundary-Layer Meteorol., 111, 247-273 https://doi.org/10.1023/B:BOUN.0000016495.85528.d7
  12. Kwon, B. H., B. Benech, D. Lambert, P. Durand, A. Druilhet, H. Giordani and S. Planton(1998). Structure of the marine atmospheric boundary layer over an oceanic thermal front SEMAPHORE experiment. J. Geophys. Res., 103, C11, 25,159-25,180 https://doi.org/10.1029/98JC02207
  13. Li, G., D. Tingyang, H. Shigenori and C. Longxun(2003). Estimates of the Bulk Transfer Coefficients and Surface Fluxes over the Tibetan Plateau using AWS Data. J. Meteorological society of Japan, 79(2), 625-635
  14. Monin, A.S. and Obukhov, A.M.(1954). Basic turbulent mixing laws in the atmospheric surface layer. Tr. Geofiz. Inst. Akad. Nauk. SSSR, 24(151), 163-187
  15. Nieuwstadt F. T. M. and P. G. Duynkerke (1996). Turbulence in the atmospheric boundary layer. Atmospheric Research, 40, 111-142 https://doi.org/10.1016/0169-8095(95)00034-8
  16. Oke, T. R.(1978). Boundary Layer Climates. Methuen London and New York Publishers, 372
  17. Panofsky, H. A. and J. A. Dutton(1984). Atmospheric turbulence. John Wiley & Sons, New York
  18. Paulson, C. A.(1970). The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857-861 https://doi.org/10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2
  19. Pielke, R. A.(1984). Mesoscale Numerical Modeling. Academic Press, New York
  20. Rabin, R. M., S. Stadler, P. J. Wetzcl, D. J. Stensrud and M. Gregory(1990). Observed effects of landscape variability on convective clouds. Bull. Amer. Meteor. Soc., 71, 272-280 https://doi.org/10.1175/1520-0477(1990)071<0272:OEOLVO>2.0.CO;2
  21. Schwartz, M. D. and T. R. Karl(1990) Nature's experiment to detect the effect of "green up" on surface maximum temperatures. Mon. Wea. Rev., 118, 883-890 https://doi.org/10.1175/1520-0493(1990)118<0883:SPNETD>2.0.CO;2
  22. Stanhill, G.(1969). A simple instrument for field measurement of turbulent diffusion flux. J. Appl. Meteorol., 8, 509-513 https://doi.org/10.1175/1520-0450(1969)008<0509:ASIFTF>2.0.CO;2
  23. Stull, R. B.(1988). An Introduction to Boundary-Layer Meteorol.. Kluwer Academic Publishers, 666
  24. Vugts, H. F. and J. A. Businger(1977). Air modification due to a step change in surface temperature. Boundary-Layer Meteorol., 11, 295-305 https://doi.org/10.1007/BF02186083
  25. Wyngaad, J. C. and O. R. Cote(1971). The Budgets of Turbulent Kinetic Energy and Temperature Variance in the Atmospheric Surface Layer. J. Atmos. Sci., 28, 190-201 https://doi.org/10.1175/1520-0469(1971)028<0190:TBOTKE>2.0.CO;2
  26. Yaoming Ma., I. Hirohiko, T. Osamu, M. Massimo, S. Zhongbo, J. Wang, T. Yao, T. Koike and T. Yasunari(2003). Regionalization of surface fluxes over heterogeneous landscape of Tibetan Plateau by using satellite remote sensing data. J. Meteor. Soc. of Japan, 81(2), 277-293 https://doi.org/10.2151/jmsj.81.277