Inter Simple Sequence Repeats (ISSR) Marker Analysis of Genetic Diversity in Korean Phasianus colchicus karpowi and Genetic Relationships Among Subspecies of Phasianus spp.

Inter Simple Sequence Repeats (ISSR) 표지자를 이용한 한국꿩의 유전적 다양성 및 아종간의 유연관계 분석

  • Yoon, Seong-Il (Department of Life Science, College of Natural Sciences, Hanyang University)
  • 윤성일 (한양대학교 자연과학대학 생명과학과)
  • Published : 2008.05.31

Abstract

The level of genetic diversity and genetic relationships among Korean ring-necked pheasant (Phasianus colchicus karpowi) habitat and subspecies have been investigated based on Inter Simple Sequence Repeat (ISSR) markers. Wild and domesticated Korean ring-necked pheasant, hybrids between domesticated Korean ring-necked and foreign subspecies, and four foreign subspecies; Chinese ring-necked (P. c. torquatus), Melanistic mutant (P. c. mut. tenebrosus), XL White (P. c. mut) and Southern green (P. c. versicolor) were used for comparison. On the basis of the results of AMOV A, 94.08% of genetic diversity in Korean ring-necked was allocated among individuals within habitat differences. Estimate of $\Phi$st, which represents the degree of genetic differentiation among habitats was 5.9%. Based on the dendrogram reconstructed by UPGMA, Yangpyung habitat of the eight habitats turned out to be distinct from others habitat. Interestingly, domesticated Korean ring-necked and hybrid mixture showed closer genetic relationship with four foreign subspecies than Korean ring-necked. As a consequence of AMOVA, 96.63% of genetic diversity in four foreign subspecies was allocated among individuals within subspecies. Estimate of $\Phi$st representing the degree of genetic differentiation among subspecies was 3.4%, which was lower than that among habitats of Korean ring-necked. The lower level of genetic difference among four foreign subspecies showed that these subspecies were genetically closer even though they were morphologically classified into four different subspecies. When seven habitats of Korean ring-necked pheasant and four foreign subspecies were divided into Korean and Foreign Pheasant Groups, respectively, more than 17% of genetic diversity was allocated between groups (about 4% among habitats/subspecies within groups). This observation implied that Korean ring-necked pheasant is genetically quite different from four foreign subspecies. On the basis of cluster analysis, three foreign subspecies (Chinese ring-necked pheasant, Melanistic mutant pheasant, and XL White pheasant) formed a distinct group with domesticated Korean ring-necked pheasant and hybrid mixture at 98% confidence interval.

한국꿩 (Korean ring-necked Pheasant, Phasianus colchicus karpowi)과 외국 아종의 유전적 유연관계를 파악하기 위해 야생 한국꿩, 사육 한국꿩, 사육 한국꿩과 외국꿩간의 잡종꿩, 외국꿩 4아종(중국 링넥, 흑 뮤탄트, 백 뮤탄트, 녹치)을 대상으로 ISSR 표지자 분석과 AMOVA 분석을 수행하였다. 야생 한국꿩의 전체 유전 다양성중 94.08%가 서식지 내 개체간 유전적 차이에 기인하고, 5.9% ($\Phi$st=0.059)가 서식지간 차이에 기인하였다. 사육 한국꿩이 유전적으로 야생 한국꿩 보다는 외국꿩 4아종과 가깝게 나타났다. AMOVA분석과 cluster분석에서 사육 한국꿩이 야생 한국꿩은 물론 외국꿩 4아종과도 유전적 차이를 보이는 것으로 미루어 볼 때 사육되고 있는 한국꿩은 한국꿩과 외국 아종간의 다양한 교잡에 의해 생겨난 잡종일 가능성이 높다. 외국꿩 4아종(중국 링넥, 흑 뮤탄트, 백 뮤탄트, 녹치)의 전체 유전 다양성중 96.63%가 아종내 개체간 차이에 기인하고. 3.4% ($\Phi$st=0.034)로 아종간 차이에 기인하여 외국꿩 4아종의 아종간 유전적 차이가 야생 한국꿩의 서식지간 차이보다도 낮은 것으로 나타났다. 이는 본 분석에 사용된 외국꿩 4아종이 형태적으로는 다른 아종으로 분류되지만 유전적으로는 매우 가까운 위치에 있음을 의미한다. 7서식지의 야생 한국정과 외국꿩 4아종을 각각 야생 한국꿩 그룹과 외국꿩 그룹으로 분류하여 두 그룹의 유전적 다양성을 분석한 결과, 전체 유전변이 중 그룹간 차이의 비율은 17% 이상(그룹 내 서식지/아종간 차이는 약 4%)으로 야생 한국꿩이 아종 관계인 외국꿩 4아종과 상당한 유전적 차이를 보이는 것으로 나타났다. 유전적 유연관계 분석결과에서 중국 링넥. 흑 뮤탄트, 백 뮤탄트의 외국꿩 3 아종은 유전적으로 외국 아종에 가까운 사육한국꿩, 잡종꿩과 함께 하나의 분지군을 형성하면서 야생 한국꿩 그룹으로부터 98% 신뢰수준에서 뚜렷하게 구별되었다.

Keywords

References

  1. Baker CM, C Manwell, RF Labiski and JA Harper. 1966. Molecular genetics of avian proteins. egg, blood and tissue proteins of the ring-necked pheasant, Phasianus colchicus. L. Comp. Biochem. Physiol. 17:467-499 https://doi.org/10.1016/0010-406X(66)90581-0
  2. Excoffier L, PE Smouse and JM Quattro. 1992. Analysis of molecular variance inferred form metric distance among DNA haplotypes: application to human mitocondrial DNA restriction data. Genetics 131:479-491
  3. Giesel JT, D Brazeau, R Koppelman and D Shiver. 1997. Ringnecked pheasant population genetic structure. J. Wildl. Manage. 61(4):1332-1338 https://doi.org/10.2307/3802134
  4. Gupta M, YS Chyi, J Romero-Severson and JL Owen. 1994. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor. Appl. Genet. 89:998-1006
  5. Haig SM, JM Rhymer and DG Heckel. 1994. Population differentiation in randomly amplified polymorphic DNA of red-cookaded woodpeckers, Picoides borealis. Molecular Ecol. 3:581-595 https://doi.org/10.1111/j.1365-294X.1994.tb00089.x
  6. Johnsgard PA. 1986. The Pheasants of the World. Oxford University Press, UK
  7. Lewontin LC. 1972. The apportionment of human diversity. Evol. Biol. 6:381-98
  8. Litt M and JA Luty. 1989. A hyper-variable micro-satellite revealed by in vitro amplication of dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44:397-401
  9. Nei M. 1972. Genetic distance between populations. Am. Nat. 106:283-292 https://doi.org/10.1086/282771
  10. Nusser JA, RM Goto, DB Ledig, RC Fleischer and MM Miller. 1996. RAPD analysis reveals low genetic variability in the endangered light-footed clapper rail. Molecular Ecol. 5:463-473 https://doi.org/10.1111/j.1365-294X.1996.tb00339.x
  11. Rogers JS. 1972. Measures of genetic similarity and genetic distance. Studies in genetics. IV. Univ. of Texas, Austin. Publ. 7213:145-153
  12. Sanchez de la Hoz MP, JA Davila, Y Loarce and E Ferrer. 1996. Simple sequence repeat primers used in polymerase chain reaction amplification to study genetic diversity in barley. Genome 39:112-117 https://doi.org/10.1139/g96-015
  13. Trautman CG. 1982. History, ecology, and management of the ring-necked pheasant in South Dakota. S.D. Dep. Game, Fish, and Parks. Pierre
  14. Vohs PA Jr. 1966. Blood group factors for analyzing pheasant populations. J. Wildl. Manage. 30:745-753 https://doi.org/10.2307/3798281
  15. Warner RE, JB Koppelman and DP Phillip. 1988. A biochemical genetic evaluation of ring-necked pheasants. J. Wildl. Manage. 52:108-112 https://doi.org/10.2307/3801068
  16. Woodard A, P Vohra and V Denton. 1993. Game bird breeders: Handbook. Hancock House Publishers Ltd.
  17. Zietkiewiez E, A Rafalski and D Labuda. 1994. Genomic fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplication. Gemomics. 20: 176-183