Effect of Ionic Salts on the Structure of Electrospun Gelatin Nanofibers

젤라틴 나노섬유 구조에 대한 이온염의 영향

  • Kim, Young-Jin (Department of Biomedical Engineering, Catholic University of Daegu)
  • 김영진 (대구가톨릭대학교 의공학과)
  • Published : 2008.09.30

Abstract

The fabrication of gelatin nanofibers by electro spinning has been examined using the TFE/DW co-solvent system. It has been found that no beads-on-string structure was formed for the solution containing ionic salts. The resulting fibers exhibited a uniform diameter ranging from 110 to 125 nm. As the concentration of ionic salts increases, the beads become smaller and more spindle like, due to the increase of viscosity and conductivity. The addition of ionic salts induces a higher charge density on the surface of ejected jet during spinning, leading that higher elongation forces are applied to the jet. The higher enhancement of viscosity and conductivity was observed in gelatin solutions by the use of divalent salt. However, the concentration of ionic salts scarcely affected the variation of fiber diameter. While very low crystallinity was observed from XRD pattern for the sample containing no ionic salt, which increased with increasing the concentration of ionic salts.

전기방사법으로 이온염을 함유하는 TFE/증류수 혼합용매를 이용하여 젤라틴 나노섬유를 제조하였으며, 얻어진 나노섬유의 평균직경은 $110{\sim}125\;nm$였다. 이온염의 농도가 증가할수록 비드의 발생이 줄어들고 균일한 나노섬유 제조가 가능하였다. 이는 이온염의 첨가에 의한 젤라틴 용액의 점도 및 전도도가 증가함에 기인하는 것으로 확인되었다. 특히 일가이온보다 이가이온을 사용할 경우 점도 및 전도도의 증가에 더 효과적이었으며 이들 이온염은 분자간 소수성 상호작용뿐만 아니라 젤라틴 분자의 입체구조 정렬에도 영향을 주었다. 그러나 이온염 농도에 따른 나노섬유의 직경변화는 관찰되지 않았다. 제조된 나노섬유를 이용한 XRD분석 결과 이온염의 농도가 증가할수록 젤라틴 분자의 재결정화에 의해 나노섬유의 결정화도가 높아졌다.

Keywords

References

  1. Y. Marois, N. Chakfe, X. Deng, M. Marois, T. How, M. W. King, and R. Guidoin, Biomaterials, 16, 1131 (1995) https://doi.org/10.1016/0142-9612(95)93576-Y
  2. J. L. Cuy, B. L. Beckstead, C. D. Brown, A. S. Hoffman, and C. M. Giachelli, J. Biomed. Mater. Res., 67A, 538 (2003) https://doi.org/10.1002/jbm.a.10095
  3. Y. Zhu, C. Gao, T. He, and J. Shen, Biomaterials, 25, 423 (2004) https://doi.org/10.1016/S0142-9612(03)00549-0
  4. J. S. Mao, H. F. Liu, Y. J. Yin, and K. D. Yao, Biomaterials, 24, 1621 (2003) https://doi.org/10.1016/S0142-9612(02)00549-5
  5. P. Buijtenhuijs, L. Buttafoco, A. A. Poot, W. F. Daamen, T. H. van Kuppevelt, P. J. Dijkstra, R. A. de Vos, L. M. Sterk, B. R. Geelkerken, J. Feijen, and I. Vermes, Biotechnol. Appl. Biochem., 39, 141 (2004) https://doi.org/10.1042/BA20030105
  6. Q. Lu, K. Gancsan, D. T. Simioncscu, and N. R. Vyavaharc, Biomaterials, 25, 5227 (2004) https://doi.org/10.1016/j.biomaterials.2003.12.019
  7. H. Fong, I. Chun, and D. H. Reneker, Polymer, 40, 4585 (1999) https://doi.org/10.1016/S0032-3861(99)00068-3
  8. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, Polymer, 43, 4403 (2002) https://doi.org/10.1016/S0032-3861(02)00275-6
  9. H. Guan, C. Shao, S. Wen, B. Chen, J. Gong, and X. Yang, Mater. Chem. Phys., 82, 1002 (2003) https://doi.org/10.1016/j.matchemphys.2003.09.003
  10. H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, Biomaterials, 24, 2077 (2003) https://doi.org/10.1016/S0142-9612(02)00635-X
  11. J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang, and X. Jing, J. Control. Release, 92, 227 (2003) https://doi.org/10.1016/S0168-3659(03)00372-9
  12. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003) https://doi.org/10.1016/S0266-3538(03)00178-7
  13. B. M. Min, G. Lee, S. H. Kim, Y. S. Nam, T. S. Lee, and W. H. Park, Biomaterials, 25, 1289 (2004) https://doi.org/10.1016/j.biomaterials.2003.08.045
  14. L. Huang, R. A. McMillan, R. P. Apkarian, B. Pourdeyhimi, V. P. Contocello, and E. L. Chaikof, Macromolecules, 33, 2989 (2000) https://doi.org/10.1021/ma991858f
  15. R. A. Caruso, J. H. Schattka, and A. Greiner, Adv. Mater., 13, 1577 (2001) https://doi.org/10.1002/1521-4095(200110)13:20<1577::AID-ADMA1577>3.0.CO;2-S
  16. Z. Chen, M. D. Forster, W. Zhou, H. Fong, and D. H. Reneker, Macromolecules, 34, 6156 (2001) https://doi.org/10.1021/ma991857n
  17. W. J. Li, T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res., 60, 613 (2002) https://doi.org/10.1002/jbm.10167
  18. Y. J. Kim and O. H. Kwon, Key Engineering Materials, 342, 169 (2007) https://doi.org/10.4028/www.scientific.net/KEM.342-343.169
  19. L. Buttafoco, N. G. Kolkman, P. Buijtenhuijs, A. A. Poot, P. J. Dijkstra, I. Vermes, and J. Feijen, Biomaterials, 27, 724 (2006) https://doi.org/10.1016/j.biomaterials.2005.06.024
  20. Z. M. Huang, Y. Z. Zhang, S. Ramakrishna, and C. T. Lim, Polymer, 45, 5361 (2004) https://doi.org/10.1016/j.polymer.2004.04.005
  21. C. S. Ki, D. H. Baek, K. D. Gang, K. H. Lee, I. C. Um, and Y. H. Park, Polymer, 46, 5094 (2005) https://doi.org/10.1016/j.polymer.2005.04.040
  22. S. Chatterjee and H. B. Bohidar, Int. J. Biol. Macromol., 35, 81 (2005) https://doi.org/10.1016/j.ijbiomac.2005.01.002
  23. S. Kara, C. Tamerler, H. Bermek, and Ö. Pekcan, Int. J. Biol. Macromol., 31, 177 (2003) https://doi.org/10.1016/S0141-8130(02)00080-6
  24. M. Nakano, J. R. Shen, and K. Kamino, Biomacromolecules, 8, 1830 (2007) https://doi.org/10.1021/bm0612236
  25. X. Zong, K. S. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, Polymer, 43, 4403 (2002) https://doi.org/10.1016/S0032-3861(02)00275-6