Antioxidant Properties of Different Polysaccharides Extracted with Water and Sodium Hydroxide from Rice Bran

  • Zha, Xue-Qiang (School of Biotechnology and Food Engineering, Hefei University of Technology) ;
  • Luo, Jian-Ping (School of Biotechnology and Food Engineering, Hefei University of Technology) ;
  • Zhang, Lei (School of Biotechnology and Food Engineering, Hefei University of Technology) ;
  • Hao, Jie (School of Biotechnology and Food Engineering, Hefei University of Technology)
  • Published : 2009.04.30

Abstract

The antioxidant properties of water extracted polysaccharides (PW), 1%(w/v) NaOH extracted polysaccharides (PN1), and 5%(w/v) NaOH extracted polysaccharides (PN5) were assessed in this paper. PW showed good capability of scavenging $H_2O_2$, anti-lipid peroxidation, reduction power, and scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH). The maximum values were all observed at the dose of 1 mg/mL sample. As far as the antioxidant activities of PN1 were concerned, the capability of scavenging superoxide radical, chelating metal, and total antioxidation showed higher than those of PN5. When polysaccharide concentration was 1 mg/mL, the 3 index described above were attached 71.8%, 51.6%, and $446.3{\mu}M$ Trolox equivalent, respectively. With respect to PN5, higher capabilities of scavenging hydroxyl free radicals were obtained while the peak of 84.8% was observed at the concentration of 1.0 mg/mL. Moreover, the concentration-dependent influences were characterized in all cases.

Keywords

References

  1. Luo JP, Deng YY, Zha XQ. Studies on the intervening mechanism of polysaccharides from Dendrobium huoshanense on streptozotocininduced diabetic cataract. Pharm. Biol. 46: 243-249 (2008) https://doi.org/10.1080/13880200701739397
  2. Nandita S, Rajini PS. Free radical scavenging activity of an aqueous extract of popato pell. Food Chem. 85: 611-616 (2004) https://doi.org/10.1016/j.foodchem.2003.07.003
  3. Qi HM, Zhang QB, Zhao TT, Chen R, Zhang H, Niu XZ, Li Z. Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. Int. J. Biol. Macromol. 37: 195-199 (2005) https://doi.org/10.1016/j.ijbiomac.2005.10.008
  4. Harada HM, Tanaka K, Fukuda Y, Hashimoto W. Paenibacillus sp. Strain HC1 xylanases responsible for degradation of rice bran hemicellulose. Microbiol. Res. 163: 293-298 (2008) https://doi.org/10.1016/j.micres.2006.05.011
  5. Gurpreet KC, Sogi DS. Functional properties of rice bran protein concentrates. J. Food Eng. 79: 592-597 (2007) https://doi.org/10.1016/j.jfoodeng.2006.02.018
  6. Chen H, Zhang M, Qu Z, Xie B. Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia Sinensis). Food Chem. 106: 559-563 (2008) https://doi.org/10.1016/j.foodchem.2007.06.040
  7. Tseng YH, Yang JH, Mau JL. Antioxidant properties of plysaccharides from Ganoderma tsugae. Food Chem. 107: 732-738 (2008) https://doi.org/10.1016/j.foodchem.2007.08.073
  8. Zha XQ, Luo JP. Production stability of active polysaccharides of Dendrobium huoshanense using long-term cultures of protocormlike bodies. Planta Med. 74: 90-93 (2008) https://doi.org/10.1055/s-2007-993762
  9. Zha XQ, Luo JP, Luo SZ, Jiang ST. Structure identification of a new immunostimulating polysaccharide from the stems of Dendrobium huoshanense. Carbohyd. Polym. 69: 86-93 (2007) https://doi.org/10.1016/j.carbpol.2006.09.005
  10. Smirnoff N, Cumbes QJ. Hyroxyl radical scavenging activity of compatible solutes. Phytochemistry 28: 1057-1060 (1989) https://doi.org/10.1016/0031-9422(89)80182-7
  11. Wang J, Zhang Q, Zhang Z, Li Z. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. Int. J. Biol. Macromol. 42: 127-132 (2008) https://doi.org/10.1016/j.ijbiomac.2007.10.003
  12. Xie Z, Huang J, Xu X, Jin Z. Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chem. 111: 370-376 (2008) https://doi.org/10.1016/j.foodchem.2008.03.078
  13. Ruch KJ, Cheng SJ, Klauning JE. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechin isolated from Chinese green tea. Carcinogenesis 10: 1003-1008 (1989) https://doi.org/10.1093/carcin/10.6.1003
  14. Yuan JF, Zhang ZQ, Fan ZC, Yang JX. Antioxidant effects and cytotoxicity of three purified polysaccharides from Ligusticum chuanxiong Hort. Carbohyd. Polym. 74: 822-827 (2008) https://doi.org/10.1016/j.carbpol.2008.04.040
  15. Yoshiyuki K, Michinori K, Tadato T, Shigeru A, Hiromichi O. Studies on Scutellariae radix. IV. Effects on lipid peroxidation in rat liver. Chem. Pharm. Bull. 29: 2610-2617 (1981) https://doi.org/10.1248/cpb.29.2610
  16. Arts M, Dallinga JS, Voss HP, Haenen G, Bast A. A critical appraisal of the use of the antioxidant capacity (TEAC) assay in defining optimal antioxidant structures. Food Chem. 80: 409-414 (2003) https://doi.org/10.1016/S0308-8146(02)00468-5
  17. Shon MY, Kim TH, Sung NJ. Antioxidants and free radical scavenging activity of Phellinus baumii (Phellinus of Hymenochaetaceae) extracts. Food Chem. 82: 593-597 (2003) https://doi.org/10.1016/S0308-8146(03)00015-3
  18. MacDonald J, Galley HF, Webster NR. Oxidative stress and gene expression in sepsis. Brit. J. Anaesth. 90: 221-232 (2003) https://doi.org/10.1093/bja/aeg034
  19. Mokbel MS, Hashinaga F. Evaluation of the antioxidant activity of extracts from buntan (Citrus grandis Osbeck) fruit tissues. Food Chem. 94: 529-534 (2006) https://doi.org/10.1016/j.foodchem.2004.11.042
  20. Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J. Agr. Food Chem. 53: 1841-1856 (2005) https://doi.org/10.1021/jf030723c
  21. Yildírím A, Mavi A, Kara AA. Determination of antioxidant and antimicrobial activities of Rumaxs crispus L. extracts. J. Agr. Food Chem. 49: 4083-4089 (2001) https://doi.org/10.1021/jf0103572
  22. Gordon MH. The mechanism of the antioxidant action in vitro. pp. 1-48. In: Food Antioxidants. Elsevier, New York, NY, USA (1990)
  23. Moure A, Dominguez H, Parajo JC. Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochem. 41: 447-456 (2006) https://doi.org/10.1016/j.procbio.2005.07.014
  24. Yamaguchi R, Tatsumi MA, Karo K, Yoshimitsu U. Effect of metal salts and fructose on the autoxidation of methyl linoleate in emulsions. Agr. Biol. Chem. Tokyo 52: 849-850 (1988) https://doi.org/10.1271/bbb1961.52.849
  25. Dorman H, Peltoketo A, Hiltunen R, Tikkanen M. Characterization of the antioxidant properties of deodorized aqueous extracts from selected Lamiaceae Herbs. Food Chem. 83: 255-262 (2003) https://doi.org/10.1016/S0308-8146(03)00088-8
  26. Mau JL, Chang CN, Huang SJ, Chen CC. Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta, and Termitomyces albuminosus mycelia. Food Chem. 87: 111-118 (2004) https://doi.org/10.1016/j.foodchem.2003.10.026
  27. Duh PD, Du PC, Yen GC. Action of methanolic extract of mung bean hulls as inhibitors of lipid peroxidation and non-lipid oxidative damage. Food Chem. Toxicol. 37: 1055-1061 (1999) https://doi.org/10.1016/S0278-6915(99)00096-4
  28. Yamamoto N, Kajimoto G. Antioxidation effect of Gly-Gly-His on Cu(II)-catalyzed autooxidation and photosensitized oxidation of lipids. Agr. Biol. Chem. Tokyo 44: 2735-2736 (1980) https://doi.org/10.1271/bbb1961.44.2735
  29. Miraliakbari H, Shahidi F. Antioxidant activity of minor components of tree nut oils. Food Chem. 111: 421-427 (2008) https://doi.org/10.1016/j.foodchem.2008.04.008