Population Viability Analysis of a Gold-spotted Pond Frog (Rana chosenica) Population: Implications for Effective Conservation and Re-introduction

금개구리 (Rana chosenica) 개체군의 생존분석: 개체군의 효과적인 보존과 야생복귀를 위한 제안

  • Cheong, Seok-Wan (Korean Ministry of Environment) ;
  • Sung, Ha-Cheol (Department of Biology Education, Korea National University of Education) ;
  • Park, Dae-Sik (Department of Science Education, Kangwon National University) ;
  • Park, Shi-Ryong (Department of Biology Education, Korea National University of Education)
  • Published : 2009.02.28

Abstract

Population viability analysis of a Gold-spotted pond frog (Rana chosenica) population at Cheongwon-gun, Chungbuk, in South Korea was conducted and we proposed several suggestions for effective conservation and re-introduction of the species. Simulating a developed model over 1,000 times predicted that the population will exist over 30 years with a relatively low growth rate of 0.113, but with a high probability of extinction as 81.1%. Population growth and extinction probability were the most greatly depended on the rate of successful metamorphosis. In the case of outbreak of amphibian diseases such as Chytridiomycosis and Ranavirus, the population will be easily extinct within 4 years with 100% probability. In a habitat of which carrying capacity is 200, to successfully re-introduce an extinct population, it is initially needed to put 100 individuals of which 83% is males and its age structure is normal-distributed. If we additionally conducts artificial supplementation of 10% individuals every 2 years from 4 years to 10 years after initial reintroduction, the population will become a stable with 0.297 growth rate and 0.290 extinction rate. Our results are the first case of amphibian population viability analysis in Korea and could be used to develop effective conservation and re-introduction plans for endangered Gold-spotted pond frog.

멸종위기종 금개구리 (Rana chosenica)개체군의 존속 가능성을 알아보고 효과적인 보전 대책의 마련과 야생복귀 방법을 개발하기 위하여 충북 청원군에 서식하는 개체군을 대상으로 개체군생존분석을 실시하였다. 해당 금개구리의 개체군은 30년간 1,000회의 시뮬레이션을 통해 0.113의 낮은 성장률을 가지고 존속해 나갈 것이라 예측이 되었으나 절멸가능성 또한 81.1%로 매우 높아 환경적으로 민감한 특징을 가지고 있었다. 금개구리 개체군의 개체군 성장률과 절멸가능성은 변태율의 변화에 대해 가장 민감하게 반응하는 것으로 나타났는데, 이는 금개구리의 야외 개체군을 안정적으로 유지하기 위해서는 무엇보다도 금개구리 유생이 변태할 때까지의 생존율을 높이는 것이 결정적이라는 것을 의미한다. 항아리곰팡이병이나 개구리바이러스와 같은 질병이 발병할 경우 개체군의 절멸확률이 100%로 예측되었다. 절멸 개체군의 야생개체군 복원의 방법으로는 수컷의 비율을 83%, 투여개체들의 나이구조가 정상분포를 보이는 100마리의 개체군을 200마리를 수용할 수 있는 지역에 복귀를 시키고, 4년 후 2년 단위로 10년 후까지 10%씩 보충하는 방법이 가장 안정된 개체군을 복원, 유지하는 방법으로 나타났으며, 이 복원된 개체군의 경우 지속적으로 금개구리의 유생이 변태할 때까지의 생존율을 높일 수 있는 보호대책이 마련된다면 성장률 0.297, 절멸가능성 0.290을 갖는 안정된 개체군을 30년 후 138마리까지 유지할 수 있을 것으로 분석되었다. 이러한 결과들은 금개구리 개체군의 보전과 재도입을 위한 효과적인 전략수립의 근거로 활용될 수 있을 것이다.

Keywords

References

  1. 환경부. 2005. 야생동식물보호볍 시행규칙
  2. Akcakaya HR and P Sjogren-Gulve. 2000. Population viability analyses in conservation planning: an overview. Ecological Bulletin 48:9-21
  3. Allendorf FW, D Bayles, DL Bottom, KP Currens, CA Frissell, D Hankin, JA Lichatowich, W Nehlsen, PC Trotter and TH Williams. 1997. Prioritizing Pacific salmon stocks for conservation. Conservation Biology 11:140-152 https://doi.org/10.1046/j.1523-1739.1997.95248.x
  4. Armbruster P and R Lande. 1993. A population viability analysis for African elephant (Loxodonta africana) : How big should reserves be? Conservation Biology 7:602-610 https://doi.org/10.1046/j.1523-1739.1993.07030602.x
  5. Beissinger SR. 2002. Overview of population viability analysis. In Population viability analysis (Beissinger SR and DR McCullough eds.). Univ. Chicago Press, Chicago
  6. Berger L, R Speare, HB Hines. G Marantelli, AD Hyatt, KR McDonald, LF Skerratt, V Olsen, JM Clarke, G GiJIespie, M Mahony, N Sheppard, C Williams and MJ Tyler. 2004. Effect of season and temperature on mortality in amphibians due to chytridiomycosis. Australian Vet. J. 82:31-36
  7. Cheong S. D Park, HC Sung, JH Lee and SR Park. 2007. Skeletochronological age determination and comparative demographic analysis of two populations of the Fold-spotted pond frog (Rana chosenica). J. Ecol. Field Biol. 30:57-62 https://doi.org/10.5141/JEFB.2007.30.1.057
  8. Crouse D, L Crowder and H Caswell. 1987. A stagebased population model for loggerhead sea turtles and implications for conservation. Ecology 68:1412-1423 https://doi.org/10.2307/1939225
  9. Densmore CL and DE Green. 2007. Diseases of amphibians. ILAR Journal 48:235-254 https://doi.org/10.1093/ilar.48.3.235
  10. Duellman WE and L Trueb. 1994. Biology of amphibians. McGraw-Hill Pub Com. Baltimore
  11. Frost DR. 2007. Amphibian species of the world : an Online reference. Version 5.0 (research.amhn.org/herpetology/amphibian/index.php). American Museum of Natural History, New York, USA
  12. Gascon C, JP Collins, RD Moore, DR Church, JE McKay and JR Mendelson (eds). 2007. Amphibian conservation action plan. lUCN/SSC Amphibian specialist group. Gland, Switzerland and Cambrige, UK
  13. IUCN. 1998. Guidelines for re-introductions. Prepared by the IUCN/SSC Re-introduction Specialist Group. IUCN, Gland, SwÎtzerland and Cambridge, UK
  14. IUCN. 2001. Red list categories and criteria version 3.1
  15. Jennings M, R Beiswinger, S Corn, M Parker, A Pessier, B Spencer and P Miller (eds). 2001. Population and habitat viability assessment for the Wyoming toad (Bufo baxteri). Final workshop report. Apple Valley. MN: IUCN/SSC Conservation breeding specialist group
  16. Kim KC, MS Kim, RT Kim, KN Kim, TS Kim, CY Rim, Ul Pak and KH Han. 2002. Red data book of DPRK (animal). MAB National Committee of DPR Korea, Pyungyang
  17. Lande R. 1988. Demographic models of the Northern spotted owl (Strix occidentalis caurina). Oecologia 75:601-607 https://doi.org/10.1007/BF00776426
  18. Lee SC. 2004. Study on in-situ and ex-situ, and restoration strategy planning for the protected wildlife anura (Rana plancyi chosemca Okada) in Korea. (MS thesis). Inha Univ. In-chon
  19. Matsui M. 2004. Rana chosenica. In: IUCN 2007. IUCN Red list of threatened species. (www.iucnredlist.org). Retrieved on 07 Jan. 2008
  20. Miller PS and RC Lacy. 2005. VORTEX: A stochastic simulation of the extinction process. Version 9.50 user's manual. Apple Valley, MN : Conservation breeding specialist group (SSC/IUCN)
  21. Morris WF and DF Doak. 2002. Quantitative conservation biology : Theory and practice of population viability analysis. Sinauer Assoc Inc. Sunderland
  22. Pellet J, G Maze and N Perrin. 2006. The contribution of patch topology and demographic parameters to population viability analysis predictions: the case of the European tree frog. Popul. Ecol. 48:353-361 https://doi.org/10.1007/s10144-006-0003-7
  23. Reed JM, LS Mills, JB Dunning Jr, ES Menges, KS McKelvey, R Frye, SR Beissinger, MC Anstett and P Miller. 2002 Emerging issues in population viability analysis. Conservation Biology 16:7-19 https://doi.org/10.1046/j.1523-1739.2002.99419.x
  24. South A, S Rushton and D Macdonald. 2000. Simulating the proposed reintroduction of the European beaver (Castor fiber) to Scotland. Biological Conservation 93:103-116 https://doi.org/10.1016/S0006-3207(99)00072-5
  25. Stebbins RC and NW Cohen. 1995. A natural history of amphibians. Princeton Univ Press. New Jersey
  26. Williams C and RA Griffiths. 2004. A population viability analysis for the reintroduction of the pool frog (Rana lessonae) in Britain. English nature research reports 585
  27. Won HG. 1971. Amphibia and reptilian in Chosen. The Society of Science, Pyungyang