Runoff Analysis due to the Moving Rainstorms on the Nonsymmetric Basin Shapes

비대칭 유역형상에 대한 이동강우의 유출영향분석

  • 전민우 (충북대학교 토목공학부)
  • Published : 2009.04.30

Abstract

The influence of moving rainstorms to runoff was analysed for the nonsymmetric shaped basins using kinematic wave theory. The distribution types of moving rainstorms are uniform, advanced, delayed and intermediate type, the nonsymmetric shaped basins are square, oblong and elongated shape. The runoff hydrographs were simulated and the characteristics were compared with the symmetric shaped basins for the rainstorms moving up, down and cross the basins with various velocities. The smallest differences of peak runoff of symmetric and nonsymmetric basins are appeared in the case of elongated basin, and the largest differences are shown at the oblong basin for the downstream direction. The identical results are shown for the upstream direction. The greatest peak runoff differences are shown in the delayed type rainstorm and the smallest differences are in the advanced type rainstorm for the crossstream direction. The oblong shaped basin generates the longest peak time and shortest peak time for the elongated shape basin.

비대칭형상의 유역에서 이동강우로 인한 유출영향을 운동파이론을 적용하여 분석하였다. 이동강우 분포형은 균등분포형, 전진형, 지연형 및 중앙집중형을 사용하였고, 비대칭유역형상은 정사각형, 신장형, 및 장방형유역에 대하여 분석하였다. 다양한 이동속도를 가진 이동강우가 비대칭유역의 상류, 하류 및 횡방향으로 이동할 때 유출수문곡선을 모의하여 그 특성을 대칭유역과 비교분석하였다. 하류방향에 대하여 신장형유역에서 대칭과 비대칭유역의 첨두유량 차이가 가장 작은 반면에 장방형유역에서 가장 큰 차이를 보여주고 있으며, 이것은 상류방향에서도 동일하게 나타났다. 횡방향에서는 대칭, 좌비대칭 및 우비대칭유역 모두 지연형 강우에서 가장 큰 첨두유량을 그리고 전진형강우에서 가장 작은 첨두유량을 보이고 있다. 첨두시간은 장방형유역에서 가장 길게 나타나고 신장형유역에서 가장 짧게 나타났다.

Keywords

References

  1. 최계운, 강희경, 박용섭, GIS를 활용한 유역내 이동강우에 의한 유출특성 연구. 한국수자원학회논문집, 제33권 제6호, pp. 793-804, 2000.
  2. 최계운, 이희승, 안상진, 분포형모델을 이용한 유역내 이동강우의 유출해석. 한국수자원학회논문집, 제25권 제1호, pp. 101-109, 1992.
  3. 한건연, 전민우, 김지성, 유역형상에 따르는 이동강우의 유출영향분석 (1). 대한토목학회논문집, 제 26권 제 1B호, pp. 15-25, 2006.
  4. de Lima, JLMP and Singh, V. P., The influence of the pattern of moving rainstorms on overland flow laboratory experiments under simulated rainfall. Water Resources publications, pp. 101-111, 1999.
  5. de Lima, JLMP and Singh, V. P., Laboratory experiments on the influence of storm movement on overland flow. Physics and Chemistry of the Earth, 28, pp. 277-282, 2003. https://doi.org/10.1016/S1474-7065(03)00038-X
  6. Lee,K. T. and Huang, J. K., Effect of moving storms on attainment of equilibrium discharge. Hydrol. Prosess., 11, pp. 3357-3366, 2007.
  7. Maksimov, V. A., Computing runoff produced by a heavy rainstorm with a moving center. Sov. Hydrol., 5, pp. 510-513, 1964.
  8. Ogden, F. L., Richardson, J. R. and Julien, P. Y., Similarity in catchment response, 2. Moving rainstorms. Water Resour. Resear., Vol. 31(6), pp. 1543-1547, 1995. https://doi.org/10.1029/95WR00519
  9. Richardson, J. R., The effect of moving rainstorms on overland flow using one-dimensional finiteelements. Ph.D. dissertation, Colorado State Univ., Colorado, 1989.
  10. Singh, V. P., Effect of spatial and temporal variability in rainfall and watershed characteristics on stream flow hydrograph. Hydrol. Prosess., 11, pp. 1649-1669, 1997. https://doi.org/10.1002/(SICI)1099-1085(19971015)11:12<1649::AID-HYP495>3.0.CO;2-1
  11. Singh, V. P., Effect of the direction of storm movement on planar flow. Hydrol. Prosess., 12, pp. 147-170, 1998. https://doi.org/10.1002/(SICI)1099-1085(199801)12:1<147::AID-HYP568>3.0.CO;2-K
  12. Singh, V. P., Effect of the duration and direction of storm movement on planar flow with full and partial areal coverage. Hydrol. P16, pp. 3437-3466, 2002a.
  13. Singh, V. P., The influence of the pattern of moving rainstorms on overland flow. Advances in Water Resources, 25, pp. 817-828, 2002b. https://doi.org/10.1016/S0309-1708(02)00067-2
  14. Surkan, A. J., Simulation of storm velocity effects of flow from distributed channel network. Water Resour. Resear., 10, pp. 1149-1160, 1974. https://doi.org/10.1029/WR010i006p01149
  15. Tabios, G. O., Obyesekera, J. T. B. and Shen, H.S., The influence of storm movement on the streamflow hydrograph through space-time rainfall generation and hydraulic routing. Colorado State Uni., Fort Collins, Colarado, 1998.