Self-Diagnosis of Damage in Carbon Fiber Reinforced Composites Using Electrical Residual Resistance Measurement

잉여 전기 저항 측정을 이용한 탄소 섬유 강화 복합재의 파손 측정

  • 강지호 (한국원자력연구원 원자력시스템기술개발부)
  • Published : 2009.08.30

Abstract

The objective of this research was to develop a practical integrated approach using extracted features from electrical resistance measurements and coupled electromechanical models of damage, for in-situ damage detection and sensing in carbon fiber reinforced plastic(CFRP) composites. To achieve this objective, we introduced specific known damage (in terms of type, size, and location) into CFRP laminates and established quantitative relationships with the electrical resistance measurements. For processing of numerous measurement data, an autonomous data acquisition system was devised. We also established a specimen preparation procedure and a method for electrode setup. Coupon and panel CFRP laminate specimens with several known damage were tested. Coupon specimens with various sizes of artificial delaminations obtained by inserting Teflon film were manufactured and the resistance was measured. The measurement results showed that increase of delamination size led to increase of resistance implying that it is possible to sense the existence and size of delamination. A quasi-isotropic panel was manufactured and electrical resistance was measured. Then three different sizes of holes were drilled at a chosen location. The panel was prepared using the established procedures with six electrode connections on each side making a total of twenty-four electrodes. Vertical, horizontal, and diagonal pairs of electrodes were chosen and the resistance was measured. The measurement results showed the possibility of the established measurement system for an in-situ damage detection method for CFRP composite structures.

본 연구의 목적은 전기 저항 측정을 통한 탄소 섬유 강화 복합재의 파손 감지를 위한 효과적인 방법을 개발하는 것이다. 이를 위하여 복합재 적층판에 특정 파손을 인위적으로 모사하고 전기 저항의 변화와 모사된 파손과의 관계를 정립하려 하였다. 많은 량의 측정치를 효과적으로 처리하기 위하여 자동화된 측정 시스템을 개발하였다. 전기 저항 측정을 위하여 시편 표면에 전극을 제작하는 방법을 개발하였다. 쿠폰과 평판형태의 탄소 섬유 강화 복합재 적층 시편에 인위적인 파손을 부과하고 전기 저항을 측정하고 그 결과를 후처리하는 과정으로 파손을 검출하였다. 쿠폰 형태의 시편은 제작시에 다양한 크기의 테플론 필름을 삽입하여 층간 분리를 모사하였다. 전기 저항 측정 결과 층간 분리 크기가 증가함에 따라 전기 저항도 증가하는 경향을 보였으며, 이를 통해 층간 분리의 존재와 그 크기를 검출할 수 있음을 보였다. 평판 시편은 초기에는 인위적인 파손 없이 제작하여 전기저항을 측정하고, 이후 특정 위치에 원공을 뚫고 원공의 직경을 증가시켜 가며 전기저항의 변화를 관찰하였다. 실험에 사용한 평판은 각 변에 6개의 전극을 설치하여 총 24개의 전극을 갖도록 하였으며 수직, 수평, 대각선 방향의 전극간의 전기 저항을 측정하였다. 측정 결과는 탄소 섬유 강화 복합재 구조물의 파손 검출을 위하여 전기 저항 측정법의 가능성을 보였다.

Keywords

References

  1. K. Schulte and C. H. Baron, 'Load and failure analysis of CFRP laminates by means of electrical resistivity measurements,' Composites Science and Technology, Vol. 36, pp. 63-76, (1989) https://doi.org/10.1016/0266-3538(89)90016-X
  2. N. Muto, H. Yanagida, T. Nakatsuji, M. Sugita and Y. Ohtsuka, 'Preventing fatal fractures in carbon-fiber-glass-fiber-reinforced composites by monitoring changes in electrical resistance,' Journal American Cerarnic Society, Vol. 76, pp. 875-879, (1992)
  3. X. Wang and D. D. L. Chung, 'Self-monitoring of fatigue damage and dynamic strain in carbon fiber polymermatrix composite,' Composites, Part B, Vol. 29, pp. 63-73, (1998) https://doi.org/10.1016/S1359-8368(97)00014-0
  4. J. C. Abry, S. Bochard, A Chateauminois, M. Salvia and G. Giraud, 'In situ detection of damage in CFRP laminates by electrical resistance measurements,' Composites Science and Technology, Vol. 59, pp. 925-935, (1999) https://doi.org/10.1016/S0266-3538(98)00132-8
  5. X. J. Wang, S. K. Wang and D. D. L. Chung, 'Sensing damage in carbon fiber and its polymer-matrix and carbon-matrix composites by electrical resistance measurement,' J. Material Science, Vol. 34, pp. 2703-2713, (1999) https://doi.org/10.1023/A:1004629505992
  6. J. C. Abry, Y. K. Choi, A Chateauminios, B. Dalloz, G. Giraud and M. Salvia, 'In-situ monitoring of damage in CFRP laminates by means of AC and DC measurements,' Composites Science and Technology, Vol. 61, pp. 855-864, (2001) https://doi.org/10.1016/S0266-3538(00)00181-0
  7. M. Kupke, K. Schulte and R. Schuler, 'Non-destructive testing of FRP by D.C. and AC. electrical methods,' Composites Science and Technology, Vol. 62, pp. 837-847, (2001)
  8. P. E. Irving and C. Thiagarajan, 'Fatigue damage characterization in carbon fiber composite materials using an electrical potential technique,' Smart Materials and Structures, Vol. 7, pp. 456-466, (1998) https://doi.org/10.1088/0964-1726/7/4/004
  9. A Todoroki, 'The effect of number of electrodes and diagnostic tool for monitoring the delamination of CFRP laminates by changes in electrical resistance,' Composites Science and Technology, Vol. 61, pp. 1871-1880, (2001) https://doi.org/10.1016/S0266-3538(01)00088-4
  10. A Todoroki and Y. Tanaka, 'Delamination identification of cross-ply graphite/epoxy composite beams using electric resistance change method,' Composites Science and Technology, Vol. 62, pp. 629-639, (2002) https://doi.org/10.1016/S0266-3538(02)00013-1
  11. A Todoroki, M. Tanaka and Y. Shimamura, 'Measurement of orthotropic electric conductance of CFRP laminates and analysis of the effect on delamination monitoring with an electric resistance change method,' Composites Science and Technology, Vol. 62, pp. 619-628, (2002)
  12. A Todoroki, Y. Tanaka and Y. Shimamura, 'Delamination monitoring of graphite/epoxy laminated composite plate of electric resistance change method,' Composites Science and Technology, Vol. 62, pp. 1151-1160, (2002) https://doi.org/10.1016/S0266-3538(02)00053-2
  13. A Todoroki, M. Tanaka and Y. Shimamura, 'High performance estimation of delamination of graphite/epoxy laminates with electric resistance change method,' Composites Science and Technology, Vol. 63, pp. 1911-1920, (2003) https://doi.org/10.1016/S0266-3538(03)00157-X
  14. A Todoroki, Y. Tanaka and Y. Shimamura, 'Identifying delamination in cross-ply and quasi-isotropic beams of CFRP by a standardized electrical resistance method,' Polymers & Polymer Composites, Vol. 12, No.1, pp. 75-86, (2004)
  15. A Todoroki, M. Tanaka and Y. Shimamura, 'Electrical resistance change method for monitoring delaminations of CFRP aminates: effect of spacing between electrodes,' Composites Science and Technology, Vol. 65, pp. 37-46, (2005) https://doi.org/10.1016/j.compscitech.2004.05.018
  16. K. Omagen, A. Todoroki, Y. Shimamura and H. Kobayashi, 'Detection of matrix cracking of CFRP using electrical resistance changes,' Key Engineering Materials, 297-300, pp. 2096-2101, (2005) https://doi.org/10.4028/www.scientific.net/KEM.297-300.2096
  17. J. B. Park, T. Okabe, N. Takeda, and W. A. Curtin, 'Electromechanical modeling of unidirectional CFRP composites under tensile loading condition,' Composites: Part A, Vol. 33, pp. 267-275, (2002) https://doi.org/10.1016/S1359-835X(01)00097-5
  18. Ruediger Schueler, Shiv P. Joshi and Karl Schulte, 'Damage detection in CFRP by electrical conductivity mapping,' Composites Science and Technology, Vol. 61, pp. 921-930, (2001) https://doi.org/10.1016/S0266-3538(00)00178-0
  19. Marthinus van Schoor, Andrew Cutler, Marcel Huigsloot, and Jared Keegan, 'Resistance-based structural health monitoring of electrically conductive composites,' 61st AHS Forum, Grapevine TX, (2005)