In vitro Antioxidant Properties and Phenolic Composition of Korean Commercial Vinegars

  • Jeong, Chang-Ho (Division of Agriculture and Life Sciences, and Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Choi, Gwi-Nam (Division of Agriculture and Life Sciences, and Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Ji-Hye (Division of Agriculture and Life Sciences, and Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kwak, Ji-Hyun (Division of Agriculture and Life Sciences, and Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kang, Su-Tae (Department of Food Science and Biotechnology, Pukyong National University) ;
  • Choi, Sung-Gil (Division of Agriculture and Life Sciences, and Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Heo, Ho-Jin (Division of Agriculture and Life Sciences, and Institute of Agriculture and Life Science, Gyeongsang National University)
  • Published : 2009.10.31

Abstract

Total phenolics and antioxidant properties of various Korean commercial vinegars (apple vinegar, AV; blueberry vinegar, BV; grape vinegar, GV; lemon vinegar, LV; Opuntia ficus vinegar, OFV; persimmon vinegar, PV; Prunus mume vinegar, PMV; rice vinegar, RV) were investigated. The total phenolic contents of 8 vinegars were within the range of 54.18-491.02${\mu}g/mL$. The vinegars were also capable of scavenging 1,1-dipehnyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radicals in a manner dependent on concentration. The greatest reducing power was observed in PV relative to the other vinegars. The ferric reducing ability of plasma (FRAP) of PV, PMV, GV, and BV were 1.012, 0.969, 0.931, and 0.856 at a dose of 1 mL, respectively. Therefore, our study verified that the GV, PV, and PMV have powerful antioxidant activities which are correlated with its high level of phenolics, particularly gallic acid, and epigallocatechin.

Keywords

References

  1. Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J. Nutr. 130: 2073S-2085S (2000)
  2. Fresco P, Borges F, Diniz C, Marques MPM. New insights on the anticancer properties of dietary polyphenols. Med. Res. Rev. 26: 747-766 (2006) https://doi.org/10.1002/med.20060
  3. Siquet C, Paiva-Martins F, Lima JL, Reis S, Borges F. Antioxidant profile of dihydroxy- and trihydroxyphenolic acids: A structureactivity relationship study. Free Radical Res. 40: 433-442 (2006) https://doi.org/10.1080/10715760500540442
  4. Calliste CA, Trouillas P, Allais DP, Duroux JL. Castanea sativa Mill. leaves as new sources of natural antioxidant: An electronic spin resonance study. J. Agr. Food Chem. 53: 282-288 (2005) https://doi.org/10.1021/jf049341c
  5. Fang YZ, Yang S, Wu G. Free radicals, antioxidants, and nutrition. Nutrition 18: 872-879 (2002) https://doi.org/10.1016/S0899-9007(02)00916-4
  6. Choo JJ. Anti-obesity effects of kochujang in rats fed on a high-fat diet. Korean Nutr. Soc. 33: 787-793 (2000)
  7. Cu CB, Lee EY, Lee DS, Ham SS. Antimutagenic and anticancer effects of ethanol extract from Korean traditional doenjang added sea tangle. J. Korean Soc. Food Sci. Nutr. 31: 322-328 (2002) https://doi.org/10.3746/jkfn.2002.31.2.322
  8. Chang JH, Shim YY, Kim SH, Chee KM, Cha SK. Fibrinolytic and immunostimulating activities of Bacillus spp. strains isolated from cheonggukjang. Korean J. Food Sci. Technol. 37: 255-260 (2005)
  9. Lee JK, Jung DW, Kim YJ, Cha SK, Lee MK, Ahn BH, Kwak NS, Oh SW. Growth inhibitory effect of fermented kimchi of food-borne pathogens. Food Sci. Biotechnol. 18: 12-17 (2009)
  10. Horiuchi J, Kanno T, Kobayashi M. New vinegar production from onions. J. Biosci. Bioeng. 88: 107-109 (1999) https://doi.org/10.1016/S1389-1723(99)80186-8
  11. Xu Q, Tao W, Ao Z. Antioxidant activity of vinegar melanoidins. Food Chem. 102: 841-849 (2007) https://doi.org/10.1016/j.foodchem.2006.06.013
  12. Nishidai S, Nakamura Y, Torikai K, Yamamoto M, Ishihara N, Mori H, Ohigashi H. Kurosu, a traditional vinegar produced from unpolished rice, suppresses lipid peroxidation in vitro and in mouse skin. Biosci. Biotech. Bioch. 64: 1909-1914 (2002) https://doi.org/10.1271/bbb.64.1909
  13. Shimoji Y, Tamura Y, Nakamura Y, Nanda K, Nishidai S, Nishikawa Y, Ishihara N, Uenakai K, Ohigashi H. Isolation and identification of DPPH radical scavenging compounds in kurosu (Japanese unpolished rice vinegar). J. Agr. Food Chem. 50: 6501- 6503 (2002) https://doi.org/10.1021/jf020458f
  14. Kim OM, Ha DJ, Jeong YJ. Antibacterial activity of vinegars on Streptococcus mutans caused dental caries. Korean J. Food Preserv. 10: 565-568 (2003)
  15. Woo SM, Jang SY, Kim OM, Youn KS, Jeong YJ. Antimicrobial effects of vinegar on the harmful food-born organisms. Korean J. Food Preserv. 11: 117-121 (2004)
  16. Kondo S, Tayama K, Tsukamoto Y, Ikeda K, Yamori Y. Antihypertensive effects of acetic acid and vinegar on spontaneously hypertensive rats. Biosci. Biotech. Bioch. 65: 2690- 2694 (2001) https://doi.org/10.1271/bbb.65.2690
  17. Fushimi T, Tayama K, Fukaya M, Kitakoshi K, Nakai N, Tsukamoto Y, Sato Y. Acetic acid feeding enhances glycogen repletion in liver and skeletal muscle of rats. J. Nutr. 131: 1973- 1977 (2001)
  18. Kishi M, Fukaya M, Tsukamoto Y, Nagasawa T, Takehana K, Nishizawa N. Enhancing effect of dietary vinegar on the intestinal absorption of calcium in ovariectomized rats. Biosci. Biotech. Bioch. 63: 905-910 (1999) https://doi.org/10.1271/bbb.63.905
  19. Fushimi T, Suruga K, Oshima Y, Fukiharu M, Tsukamoto Y, Goda T. Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol-rich diet. Brit. J. Nutr. 95: 916-924 (2006) https://doi.org/10.1079/BJN20061740
  20. Davalos A, Bartolome B, Gomez-Cordoves C. Antioxidant properties of commercial grape juices and vinegars. Food Chem. 93: 325-330 (2005) https://doi.org/10.1016/j.foodchem.2004.09.030
  21. Sakanaka S, Ishihara Y. Comparison of antioxidant properties of persimmon vinegar and some other commercial vinegar in radical scavenging assays and on lipid oxidation in tuna homogenates. Food Chem. 107: 739-744 (2008) https://doi.org/10.1016/j.foodchem.2007.08.080
  22. Kim DO, Jeong SW, Lee CY. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 81: 321-326 (2003) https://doi.org/10.1016/S0308-8146(02)00423-5
  23. Blois MA. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200 (1958) https://doi.org/10.1038/1811199a0
  24. Fellegrin N, Ke R, Yang M, Rice-Evans C. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2'-azinobis(3 ethylbenzothiazoline-6-sulfonic acid) radical cation decolorization assay. Method Enzymol. 299: 379-389 (1999) https://doi.org/10.1016/S0076-6879(99)99037-7
  25. Oyaizu M. Studies on products of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44: 307-315 (1986) https://doi.org/10.5264/eiyogakuzashi.44.307
  26. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of 'antioxidant power': The FRAP assay. Anal. Biochem. 239: 70-76 (1996) https://doi.org/10.1006/abio.1996.0292
  27. Robards K, Prenzeler PD, Tucker G, Swatsitang P, Glover W. Phenolic compounds and their role in oxidative process in fruits. Food Chem. 66: 401-436 (1999) https://doi.org/10.1016/S0308-8146(99)00093-X
  28. Pyo YH, Lee TC, Logendra L, Rosen RT. Antioxidant activity and phenolic compounds of Swiss chard (Beta vulgaris subspecies cycla) extracts. Food Chem. 85: 19-26 (2004) https://doi.org/10.1016/S0308-8146(03)00294-2
  29. Chen XN, Fan JF, Yue X, Wu XR, Li LT. Radical scavenging activity and phenolic compounds in persimmon (Diospyros kaki L. cv. Mopan). J. Food Sci. 73: C24-C28 (2008) https://doi.org/10.1111/j.1750-3841.2007.00587.x
  30. Awika JM, Rooney LW, Wu X, Prior RL, Cisneros-Zevallos L. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J. Agr. Food Chem. 51: 6657-6662 (2003) https://doi.org/10.1021/jf034790i
  31. Zheng W, Wang SY. Antioxidant activity and phenolic compounds in selected herbs. J. Agr. Food Chem. 49: 5165-5170 (2001) https://doi.org/10.1021/jf010697n
  32. Heo HJ, Kim YJ, Chung DC, Kim DO. Antioxidant capacities of individual and combined phenolics in a model system. Food Chem. 104: 87-92 (2007) https://doi.org/10.1016/j.foodchem.2006.11.002