Evaluation and Application of T-Ray Nondestructive Characterization of FRP Composite Materials

FRP 복합재료의 T-Ray 비파괴특성 평가 및 적용

  • Im, Kwang-Hee (Department of Mechanical & Automotive Engineering, Woosuk University) ;
  • Hsu, David K. (Center for NDE, Iowa State University)
  • 임광희 (우석대학교 기계자동차공학과) ;
  • Received : 2010.08.04
  • Accepted : 2010.10.08
  • Published : 2010.10.30

Abstract

Recently, (terahertz ray) applications have emerged as one of the most promising new powerful nondestructive evaluation (NDE) techniques. In this study, a new T-ray time-domain spectroscopy system was utilized for detecting and evaluating layup effect and flaw in FRP composite laminates. Extensive experimental measurements in reflection and thru-transmission modes were made to map out the T-ray images. Especially this was demonstrated in thick GFRP laminates containing double saw slots. In carbon composites the penetration of terahertz waves is limited to some degree and the detection of flaws is strongly affected by the angle between the electric field(E-field) vector of the terahertz waves and the intervening fiber directions. The artificial defects investigated by terahertz waves were bonded foreign material, simulated disbond and delamination and mechanical impact damage. The effectiveness and limitations of terahertz radiation for the NDE of composites are discussed.

최근에는 T-ray(terahertz ray)를 이용한 비파괴기술이 새로운 분야로 주목을 받고 있다. 본 연구에서는 FRP 복합재료의 내재결함이나 레이업(lay-up) 특성을 검사 및 평가하기 위한 T-ray 시간영역 분광기(time-domain spectroscopy)를 활용하였으며 또한 이 T-ray 분광기의 일반적인 반사 및 투과모드를 이용하여 T-ray 이미지를 구현하였다. 특히, 2개의 톱날 인공결함이 내재한 GFRP 복합재의 평가방법을 제시하였다. CFRP 복합재료에 대해서는 T-ray 전파는 탄소섬유로 인해 진행 장해를 받는다. 이에 따라 T-ray의 전기장(E-field)의 방향과 탄소섬유 방향의 의존성을 분석하였다. 한편 인공결함인 알루미늄 테이프, 박리, 충격손상, 이물혼입 등을 T-ray를 이용하여 비파괴 검사 및 평가하였다. 이를 통해 FRP 복합재료의 T-ray비파괴평가의 적용 가능성 및 한계 등을 확인 할 수 있었다.

Keywords

References

  1. Brown, E. R., Smith, F. W. and McIntosh, K. A. (1993) Coherent Millimeterwave Generation by Heterodyne Conversion in Low- Temperature-Grown GaAs Photoconductors, J. Appl. Phys., Vol. 73, No.3, pp. 1480-1484 https://doi.org/10.1063/1.353222
  2. Brown, E. R., Mclntosh, K. A., Nichols K. B. and Dennis, C. L. (1995) Photomixing up to 3.8 THz in Low-Temperature-Grown GaAs, Appl. Phys. Lett., Vol. 66, No.3, pp. 285-287 https://doi.org/10.1063/1.113519
  3. Gregory, I. S., Baker, C., Tribe, W., Bradley, I. V., Evans, M. J. and Linfield, E. H. (2000), Optimization of Photomixers and Antennas for Continuous-Wave Terahertz Emission, IEEE Journal of Quantum Electronics, Vol 41, NO.5, pp. 717- 728
  4. Hsu, D. K. (1985) Characterization of a Graphite/Epoxy Laminate by Electrical Resistivity Measurements, Prog. Rev. Quantitative NDE, Vol. 4, Plenum Press, pp. 1219-1228
  5. Hu, B. B. and Nuss, M. C. (1995) Imaging with Terahertz Waves, Opt. Lett., Vol. 20, pp. 1716-1718 https://doi.org/10.1364/OL.20.001716
  6. Huber, R., Brodschelm, A., Tauser, A. and Leitenstorfer, A. (2000) Generation and Field-Resolved Detection of Femtosecond Electromagnetic Pulses Tunable up to 41 THz, Appl. Phys. Lett., Vol. 76, pp. 3191-3199 https://doi.org/10.1063/1.126625
  7. Rudd, J. V. and Mittleman, D. M. (2002) Influence of Substrate-Lens Design in Terahertz Time-Domain Spectroscopy, J. Opt. Soc. Amer. B, Vol. 19, No.2, pp. 319-329 https://doi.org/10.1364/JOSAB.19.000319
  8. Schueler, R., Joshi, S. P. and Schulte, K. (2001) Damage Detection in CFRP by Electrical Conductivity Mapping, Composite Science and Technology, Vol. 61, 6, pp. 921-930 https://doi.org/10.1016/S0266-3538(00)00178-0
  9. Tse, K. W., Moyer, C. A. and Arajs, S. (1981) Electrical Conductivity of Graphite Fiber-Epoxy Resin Composites, Materials Science and Engineering, Vol. 49, pp. 41-46 https://doi.org/10.1016/0025-5416(81)90131-2