Nondestructive Evaluation of Nanostructured Thin Film System Using Scanning Acoustic Microscopy

초음파현미경을 이용한 나노 구조 박막 시스템의 비파괴평가

  • ;
  • 박익근 (서울과학기술대학교 기계공학과) ;
  • 박태성 (서울과학기술대학교 기계공학과)
  • Received : 2010.08.05
  • Accepted : 2010.10.08
  • Published : 2010.10.30

Abstract

In recent years, as nano scale structured thin film technology has emerged in various fields such as the materials, biomedical and acoustic sciences, the quantitative nondestructive adhesion evaluation of thin film interfaces using ultra high frequency scanning acoustic microscopy(SAM) has become an important issue in terms of the longevity and durability of thin film devices. In this study, an effective technique for investigating the interfaces of nano scale structured thin film systems is described, based on the focusing of ultrasonic waves, the generation of leaky surface acoustic waves(LSAWs), V(z) curve simulation and ultra high frequency acoustical imaging_ Computer simulations of the V(z) curve were performed to estimate the sensitivity of detection of micro flaws(i.e., delamination) in a thin film system. Finally, experiments were conducted to confirm that a SAM system operating at a frequency of 1 GHz can be useful to visualize the micro flaws in nano structured thin film systems.

최근 재료, 생물의학(biomedicine), 음향, 전자 등 다양한 분야에서 나노 구조를 갖는 박막 기술이 도입되면서 박막 계면의 수명과 내구성 확보를 위한 초고주파수의 초음파현미경을 이용한 정량적인 비파괴적 접합평가에 관한 연구가 큰 이슈가 되고 있다. 본 연구에서는 초음파의 집속, 누설탄성표면파의 발생과 V(z) 곡선의 시뮬레이션 그리고 초고주파수 음향 이미징 기법을 이용하여 나노 스케일 구조를 갖는 박막 시험편의 접합계면을 평가하였다. V(z) 곡선의 컴퓨터 시뮬레이션을 통하여 접합계면에 존재하는 미세 결함(디라미네이션 등)의 검출 감도를 추정할 수 있었으며, 1 GHz의 초고주파수 디포커싱 모드로 박막 시험편의 접합계면에 존재하는 나노 스케일의 미세 결함을 음향 이미지로 가시화 할 수 있어 나노 구조를 갖는 박막의 접합계면의 비파괴평가에 초음파현미경이 매우 유용함을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Y. H. Son, K. Y. Kim, C. I. Lim, B. K. Lee and E. G. Chang "Ferroelectric properties of Sm-doped PZT thin film," J. Korea Institute of Electrical and Electronic Materials Engineerings, Vol. 17, No.2, pp. 178-183 (2004) https://doi.org/10.4313/JKEM.2004.17.2.178
  2. H. S. Ju and Bernhard R. Tittmann, "Recent advances in scanning acoustic microscopy for adhesion evaluation of thin films," J. of Korean Society for Nondestructive Testing, Vol. 29, No.6, pp. 534-549 (2009)
  3. Z. Guo, J. D. Achenbach, A. Madan, K. Martin and M. E. Graham, "Modeling and acoustic microscopy measurements for evaluation of the adhesion between a film and a substrate," Thin Solid Films, Vol. 394, pp. 189-201 (2001)
  4. U. Rabe and W. Arnold, "Acoustic microscopy by atomic force microscopy," Appl. Phys. Lett., Vol. 64, pp. 1493-1495 (1994) https://doi.org/10.1063/1.111869
  5. K. Yamanaka and S. Nakano, "Quantitative elasticity evaluation by contact resonance in an atomic force microscope," Appl. Phys., Vol. 66, pp. S313 (1998) https://doi.org/10.1007/s003390051153
  6. K. Yamanaka and S. Nakano, "Ultrasonic atomic force microscope with overtone excitation of cantilever," Jpn, J. Appl. Phys., Vol. 35, pp. 3787-3792 (1996) https://doi.org/10.1143/JJAP.35.3787
  7. K. Yamanaka, H. Ogiso and O. Kolosov, "Ultrasonic force microscopy for nanometer resolution subsurface imaging," Appl. Phys. Lett., Vol. 64, No.2, pp. 178-180 (1994) https://doi.org/10.1063/1.111524
  8. M. J. Bamber, K. E. Cooke, A. B. Mann and B. Derby, "Accurate determination of Young's modulus and Poisson's ratio of thin film by a combination of acoustic microscopy and nanoindentation," Thin Solid Films, Vol. 398-399, pp. 299-305 (2001) https://doi.org/10.1016/S0040-6090(01)01341-4
  9. T. S. Park, D. R. Kwak, I. K. Park and C. S. Kim, "Vibro-contact analysis of ultrasonic atomic force microscopy tip and it's application to nano surface," J. of Korean Society for Nondestructive Testing, Vol. 30, No.2, pp. 132-138 (2010)
  10. C. Thomsen, H. T. Grahn, H. J. Maris and J. Tauc, "Surface generation and detection of phonons by picosecond light pulses," Phys. Rev. B, pp. 4129-4138 (1986)
  11. H. N. Lin, H. J. Maris and L. B. Freund, "Study of vibrational modes of gold nanostructures by picosecond ultrasonics," J. of Appl. Phys., Vol. 73, No.1, pp. 37-45 (1992)
  12. E. Chilla, T. Hesjedahl and H. J. Frohlich, "Nanoscale determination of phase velocity by scanning acoustic force microscopy," Phys. Rev. B., Vol. 55, pp. 15852-15855 (1997) https://doi.org/10.1103/PhysRevB.55.15852
  13. S. Parthasarathi, B. R. Tittmann, and R. J. Ianno, "Quantitative acoustic microscopy for characterization of the interface strength of diamond-like carbon thin film," Thin Solid Films, Vol. 300, pp. 42-50, (1997) https://doi.org/10.1016/S0040-6090(96)09501-6
  14. I. K. Park, C. K. Lee, D. S. Cho and Y. K. Kim, "Nondestructive evaluation of ceramic/ metal interface using the V(z) curve of scanning acoustic microscope," J. of Korean Welding and Joining Society, Vol. 23, No.2, pp. 59-65 (2005)
  15. R. D. Weglein, "Acoustic microscopy applied to SAW dispersion and film thickness measurement," IEEE. Trans. Sonics., Vol. SU-27. No.2, pp, 82-86 (1980)
  16. R. C. Bray, C. F. Quate, J. Calhoun, and R. Kock, "Film adhesion studies with the acoustic microscope," Thin Solid Films, Vol. 74, pp. 295-302 (1980) https://doi.org/10.1016/0040-6090(80)90093-0
  17. R. D. Weglein, "A model for predicting acoustic materials signatures," Appl. Phys. Lett .. Vol. 34, pp. 179-181 (1979) https://doi.org/10.1063/1.90741
  18. W. Parmon and, H. L. Bertoni, "Ray interpretation of the material signature in the acoustic microscope," Electron. Lett., Vol. 15, pp, 684-686 (1979) https://doi.org/10.1049/el:19790486
  19. T. Endo, Y. Sasaki, T. Yamagishi, and M. Sakai, "Determination of sound velocities by high frequency complex V(z) measurement in acoustic microscopy," Jpn. Appl. Phys., Vol. 31, pp. 160-162 (1992) https://doi.org/10.1143/JJAP.31.L160
  20. C. Miyasaka and B. R. Tittmann, "Characterization of stress at a ceramic/metal joined interface by the V(z) technique of scanning acoustic microscopy," J. Pressure Vessel Technol. Vol. 124, No.3, pp. 336-342