Collection Characteristics of Multi-layer Multi-stage Porous Plate System

다층 다단 다공성 플레이트 시스템의 집진 특성

  • Received : 2010.04.28
  • Accepted : 2010.09.17
  • Published : 2010.10.31

Abstract

The main object of this study is to investigate the collection characteristics of multi-layer multi-stage porous plate system experimentally. The experiment is carried out to analyze the characteristics of pressure drop and collection efficiency for the present system with the experimental parameters such as inlet velocity, tube diameter, inlet concentration, and stage number, etc. In results, the pressure drop becomes 22 to $115mmH_2O$ with increment of stage number (1 to 5) of porous plate system at tube velocity 15 m/s and tube diameter ${\Phi}8$. In case of fly ash and 5 stage, the collection efficiency becomes 90.5 to 95.7% increasing the tube velocity 12 to 15 m/s at inlet concentration $3g/m^3$ and tube diameter ${\Phi}8$. Additionally, it is estimated that the collection efficiencies of 5 stage are 94.3, 95.6 and 99.1% for fly ash, steel dust and based power, respectively (${\Phi}8$ tube, $V_t$ = 12m/s, inlet concentration $3g/m^3$).

Keywords

References

  1. Bahman A. and Matthew N. G., 1997, "Transport and Deposition of Particles and Fibers in a Virtual Impactor", Aerosol Sci. Technol., Vol. 27, pp. 499-506. https://doi.org/10.1080/02786829708965490
  2. Daniel M., Pierre P. and Marcel B., 1999, "A Versatile Flat-Deposit Impactor-Type Aerosol Collector, Part 1 : Design and Qualitative Study", Aerosol Sci. Technol., Vol. 31, pp. 323-337. https://doi.org/10.1080/027868299304057
  3. Daniel M., Pierre P. and Marcel B., 1999, "A Versatile Flat-Deposit Impactor-Type Aerosol Collector, Part 2 : Calibration and Quantitative Study", Aerosol Sci. Technol., Vol. 31, pp. 338-349. https://doi.org/10.1080/027868299304066
  4. Yoshikazu K. et al., 1995, "Improvement of multi-jet low pressure impactor for high collection efficiency of UF5 in the molecular laser isotope separation of uranium", J. Nucl. Mater., Vol. 224, pp. 43-49. https://doi.org/10.1016/0022-3115(95)00035-6
  5. Jiro K. et al., 1991, "Separation Efficiency of Particles in Low Pressure Virtual Impactor", J. Nucl. Mater., Vol. 28, pp. 166-169.
  6. Tsai C. J. and Cheng Y. H., 1995, "Solid Particle Collection Characteristics on Impaction Surface of Different Designs", Aerosol Sci. Technol., Vol. 23, pp. 96-106. https://doi.org/10.1080/02786829508965297
  7. Daniel J. R. and Anthony S. G., 1998, "Showerhead-enhanced inertial particle deposition in parallel plate reactors". Aerosol Sci. Technol., Vol. 28, pp. 105-132. https://doi.org/10.1080/02786829808965515
  8. Huang C. H. and Tsai C. J., 2001, "Effect of gravity on particle collection efficiency of inertial impactors", J. Aerosol Sci., Vol. 32, pp. 357-387. https://doi.org/10.1016/S0021-8502(01)00099-4
  9. Novick V. J. and Alvalez J. L., 1987, "Design of a Multistage virtual Impactor", Aerosol Sci. Technol., Vol. 6, pp. 63-70. https://doi.org/10.1080/02786828708959120
  10. Benjamin J. and Wang H. C., 1995, "On the shape of impactor efficiency curves", J. Aerosol Sci., Vol. 26, No. 7, pp. 1139-1147. https://doi.org/10.1016/0021-8502(95)00053-F
  11. Annele V. et al., 2001, "Fine particle losses in electrical low-pressure impactor", J. Aerosol Sci., Vol. 32, pp. 389-401.
  12. Marko M. et al., 2000, "Performance evaluation of the Electrical Low-Pressure Impactor (ELPI)", J. Aerosol Sci., Vol. 32, No. 2, pp. 249-261.
  13. Swanson P. D. et al., 1996, "Numerical analysis of motion and deposition of particles in cascade impactors", Int. J. Pharm., Vol. 142, pp. 33-51. https://doi.org/10.1016/0378-5173(96)04643-1
  14. Klaus W., Xuejun L. and Sergey A. G., 1998, "Improved Aerosol Collection by Combined Impaction and Centrifugal Motion", Aerosol Sci. Technol., Vol. 28, No. 5, pp. 439-456. https://doi.org/10.1080/02786829808965536
  15. Parcker C. R., 1993, Aerosol science and technology, McGraw-Hill Inc., pp. 104-105.