DOI QR코드

DOI QR Code

Biocompatibility of Multilayer Poly Methyl Methacrylate (PMMA)/Poly Vinyl Alcohol (PVA) Bone Plate by Electrospinning Method

전기방사로 제조된 다층 Poly Methyl Methacrylate (PMMA)/Poly Vinyl Alcohol (PVA) Bone Plate의 생체적합성 평가

  • Kwak, Kyung-A (Department of Microbiology, School of Medicine, Soonchunhyang University) ;
  • Kim, Young-Hee (Department of Microbiology, School of Medicine, Soonchunhyang University) ;
  • Thai, Van Viet (Department of Biomedical Engineering, School of Medicine, Soonchunhyang University) ;
  • Lee, Byong-Taek (Department of Biomedical Engineering, School of Medicine, Soonchunhyang University) ;
  • Song, Ho-Yeon (Department of Microbiology, School of Medicine, Soonchunhyang University)
  • 곽경아 (순천향대학교 의과대학 미생물학교실) ;
  • 김영희 (순천향대학교 의과대학 미생물학교실) ;
  • ;
  • 이병택 (순천향대학교 의과대학 의공학교실) ;
  • 송호연 (순천향대학교 의과대학 미생물학교실)
  • Received : 2010.04.18
  • Accepted : 2010.06.07
  • Published : 2010.06.27

Abstract

Multilayer Poly methyl methacrylate (PMMA)/ Poly vinyl alcohol (PVA) bone plates were fabricated using electrospinning and in vitro investigations were carried out for pre-clinical biocompatibility studies. The initial cellular cytotoxicity of the methacrylate (PMMA)/ Poly vinyl alcohol (PVA) bone plates was measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay using fibroblast-like L-929 cells. Cellular adhesion and differentiation studies were carried out using osteoblast-like MG-63 cells. As simulated body fluid (SBF) contains the same ionic concentration of body fluid and any bioactive material tends to deposit bone-like apatite on the samples surfaces into the SBF, in vitro bioactivity of the multilayer bone plates were investigated using SBF. We also studied the internal organization and tensile strength of the multilayer PMMA/PVA bone plates using micro-computed topography (${\mu}$-CT) and universal testing instrument (UTI, Korea) respectively. The cellular cytotoxicity study with MTT confirmed that the cellular viability was 78 to 90% which indicates good cyto-compatibility. Scanning electron microscopic findings revealed a good attachment and adhesion phenomenon of MG-63 cells onto the surfaces of the samples. Cellular differentiation studies also showed that osteogenic differentiation was switched on in a timely manner and affirmed along with that of the control group. Bone-like apatite formation on the surfaces was confirmed within 14 days of SBF incubation. Initial organizations of the multilayer PMMA/PVA bone plates were characterized as dense and uniform. The tensile strength of the post-pressing electronspun mat was higher than that of the pre-electronspun mat. These results suggest that a multilayer PMMA/PVA bone plate system is biocompatible, bioactive and a very good alternative bone plate system.

Keywords

References

  1. K. R. Krishan, I. Sridhar and D. N. Ghista, J. Care Injured., 39, 1421 (2008). https://doi.org/10.1016/j.injury.2008.04.013
  2. B. R. Plaga, R. M . Royster, A. M. Donigian, G. B Wrightand P. M. Caskey, J. Bone Joint Surg., 74, 292 (1992).
  3. K. Viheonen, Acta Orthop. Scand., 59(3), 279 (1988). https://doi.org/10.3109/17453678809149363
  4. S. Vainionpaa, K. Vihtonen, M. Mero, H. Patiala, P.Rokkanen, J. Kilpikary and P. Tormala, Arth. Orthop. Trauma Surg., 106, 1 (1986). https://doi.org/10.1007/BF00435641
  5. S. Gross and E. W. Abel, J. Biomech., 34, 995 (2001). https://doi.org/10.1016/S0021-9290(01)00072-0
  6. Y. Mutoh, A Akhmad, Y. Miyashita and T. Sadasue, Mat. Sci. Eng. A., 468, 114 (2007). https://doi.org/10.1016/j.msea.2006.07.171
  7. M. L. Strycker, J. Foot Ankle Surg., 34, 82 (1995). https://doi.org/10.1016/S1067-2516(09)80107-5
  8. S. Vainionpaa, J. Kilpikari, J. Laiho, P. Rokkanen and P.Tormala, Biometerials, 8, 46 (1987). https://doi.org/10.1016/0142-9612(87)90028-7
  9. K. Arakawa, T Mada, S. D. Park and M. Todo, Poly Test., 25, 628 (2006). https://doi.org/10.1016/j.polymertesting.2006.04.004
  10. J. H. Jang, O. Castano and H. W. Kim, Adv. Drug Deliv. Rev., 61, 1065 (2009). https://doi.org/10.1016/j.addr.2009.07.008
  11. D. H. Reneker and I. Chun, Nanotechnology, 7, 216(1996). https://doi.org/10.1088/0957-4484/7/3/009
  12. D. Liang, B. S. Hsian and B. Chu, Adv. Drug Deliv. Rev., 59, 1392 (2007). https://doi.org/10.1016/j.addr.2007.04.021
  13. J. P. Chen, K. H. Ho, Y. P. Chiang and K. W. Wu, J. Membr. Sci., 340, 9 (2009). https://doi.org/10.1016/j.memsci.2009.05.002
  14. S. J. Zang and H. Q. Yu. Water Res., 38, 309 (2004). https://doi.org/10.1016/j.watres.2003.09.020
  15. G. S. Sailaja, K. Sreenivasan, Y. Yokogawa, T. V. Kumaryand H. K. Varma, Acta Biomater., 5, 1647 (2009). https://doi.org/10.1016/j.actbio.2008.12.005
  16. T. Kokubo and H. Takadama, Biomaterials, 27, 2907(2006). https://doi.org/10.1016/j.biomaterials.2006.01.017
  17. C. C. Demerlis and D. R. Schoneker, Food Chem. Toxiol.,41, 319 (2003). https://doi.org/10.1016/S0278-6915(02)00258-2
  18. T. G. Tihan, M. D. Ionita, R. G Poperscu and D.Iordachescu, Mater. Chem. Phys., 118, 265 (2009). https://doi.org/10.1016/j.matchemphys.2009.03.019
  19. P. Sangsanoh, O. Suwantong, A. Neamnark, P. Cheepsunthorn,P. Pavasant and P. Supaphol, Eur. Polym. J., 46,428 (2010). https://doi.org/10.1016/j.eurpolymj.2009.10.029
  20. I. S. Byun, S. K. Sarkar, H. S. Seo, B. T. Lee and H. Y.Song, Kor. J. Mater. Res., 20(3), 155 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.3.155
  21. G. K. Toworfe, S. Bhattacharyya, R. J. Composto, C. S.Adams, I. M. Shaprio and P. Ducheyne, J. Tissue Eng. Regen. M., 3, 26 (2009). https://doi.org/10.1002/term.131