DOI QR코드

DOI QR Code

Effect of n-type Dopants on CoSb3 Skutterudite Thermoelectrics Sintered by Spark Plasma Sintering

Spark Plasma Sintering 법으로 제조한 CoSb3 Skutterudite계 열전소재의 n형 첨가제 효과

  • Lee, Jae-Ki (Energy Material Center, Green Ceramic Div., Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Choi, Soon-Mok (Energy Material Center, Green Ceramic Div., Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Lee, Hong-Lim (Department of Materials Science Engineering, Yonsei University) ;
  • Seo, Won-Seon (Energy Material Center, Green Ceramic Div., Korea Institute of Ceramic Engineering and Technology (KICET))
  • 이재기 (한국세라믹기술원(KICET) 에너지소재센터) ;
  • 최순목 (한국세라믹기술원(KICET) 에너지소재센터) ;
  • 이홍림 (연세대학교 신소재공학과) ;
  • 서원선 (한국세라믹기술원(KICET) 에너지소재센터)
  • Received : 2010.05.11
  • Accepted : 2010.06.10
  • Published : 2010.06.27

Abstract

$CoSb_3$ Skutterudites materials have high potential for thermoelectric application at mid-temperature range because of their superior thermoelectric properties via control of charge carrier density and substitution of foreign atoms. Improvement of thermoelectric properties is expected for the ternary solid solution developed by substitution of foreign atoms having different valances into the $CoSb_3$ matrix. In this study, ternary solid solutions with a stoichiometry of $Co_{1-x}Ni_xSb_3$ x = 0.01, 0.05, 0.1, 0.2, $CoSb_{3-y}Te_y$, y = 0.1, 0.2, 0.3 were prepared by the Spark Plasma Sintering (SPS) system. Before the SPS synthesis, the ingots were synthesized by vacuum induction melting and followed by annealing. For phase analysis X-ray powder diffraction patterns were checked. All the samples were confirmed as single phase; however, with samples that were more doped than the solubility limit some secondary phases were detected. All the samples doped with Ni and Te atoms showed a negative Seebeck coefficient and their electrical conductivities increased with the doping amount up to the solubility limit. For the samples prepared by SPS the maximum value for dimensionless figure of merit reached 0.26, 0.42 for $Co_{0.9}Ni_{0.1}Sb_3$, $CoSb_{2.8}Te_{0.2}$ at 690 K, respectively. These results show that the SPS method is effective in this system and Ni/Te dopants are also effective for increasing thermoelectric properties of this system.

Keywords

References

  1. G. A. Slack, CRC Handbook of Thermoelectrics, p.407, ed. D. M. Rowe, CRC Press, Boca Raton, (1995).
  2. B. C Sales, D. Mandrus, B. C Chakoumakos, V. Keppensand J. R. Thompson, Phys. Rev. B, 56, 15081 (1997). https://doi.org/10.1103/PhysRevB.56.15081
  3. T. Caillat, A. Borshchevsky and J. P. Fleurial, J. Appl. Phys., 80, 4442 (1996). https://doi.org/10.1063/1.363405
  4. G. J. Snyder and E. S. Toberer, Nat. Mater., 8, 105 (2008).
  5. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K.Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J.Snyder, Science, 321, 554 (2008). https://doi.org/10.1126/science.1159725
  6. G. S. Nolas, G. A. Slack, D. T. Morelli, T. M. Tritt and A.C. Ehrlich, J. Appl. Phys., 79, 4002 (1996). https://doi.org/10.1063/1.361828
  7. G. S. Nolas, J. L. Cohn and G. A. Slack, Phys. Rev. B,58, 164 (1998). https://doi.org/10.1103/PhysRevB.58.164
  8. D. M. Rowe, Thermoelectrics Handbook : Macro to Nano, p.26-1, ed. D. M. Rowe, CRC Press, Boca Raton,(2006).
  9. I. H. Kim and S. C. Ur, Met. Mater. Int., 13, 53 (2007). https://doi.org/10.1007/BF03027823
  10. K. T. Wojciechowski, Mater. Res. Bull., 37, 2023 (2002). https://doi.org/10.1016/S0025-5408(01)00758-9
  11. D. M. Rowe, Thermoelectrics Handbook : Macro to Nano, p.1-1, ed. D. M. Rowe, CRC Press, Boca Raton, (2006).
  12. M. J. Kim, W. S. Shim, S. C. Ur and I. H. Kim, Kor. J. Mater. Res., 16(7), 412 (2006) (in Korean). https://doi.org/10.3740/MRSK.2006.16.7.412
  13. W. S. Liu, B. P. Zhang, J. F. Li, H. L. Zhang and L. D.Zhao, J. Appl. Phys., 102, 103717 (1998). https://doi.org/10.1063/1.2815671
  14. S. W. Wang, L. D. Chen, Y. S. Kang, M. Niino and T.Hirai, Mater. Res. Bull., 35, 619 (2000). https://doi.org/10.1016/S0025-5408(00)00246-4
  15. M. Omori, Mater. Sci. Eng. A, 287, 183 (2000). https://doi.org/10.1016/S0921-5093(00)00773-5
  16. H. Anno, K. Hatada, H. Shimizu, K. Matsubara, Y.Notohara, T. Sakakibara, H, Tashino and K. Motoya, J. Appl. Phys., 83, 5270 (1998). https://doi.org/10.1063/1.367350
  17. J. W. Sharp, E. C. Jones, R. K. Williams, P. M. Martin andB. C. Sales, J. Appl. Phys., 78, 1013 (1995). https://doi.org/10.1063/1.360402
  18. Y. Kawaharada, K. Kurosaki, M. Uno and S. Yamanaka,J. Alloys. Comp., 315, 193 (2001). https://doi.org/10.1016/S0925-8388(00)01275-5
  19. V. D. Ros, B. Lenoir, A. Dauscher, C. Bellouard and J.Hejmanek, in Proceedings of the Third European Conference on Thermoelectrics (Ecole Nationale Sup'erieure des Mines de Nancy, France, September 2005) p.108.
  20. J. W. Sharp, S. J. Poon and H. J. Goldsmid, in Proceedings of the 19th International Conference on Thermoelectrics, ed. D. M. Rowe (Babrow Press, Cardiff, UK, 2000) p.1.